No Arabic abstract
Breast cancer is one of the most common cancers in women worldwide, and early detection can significantly reduce the mortality rate of breast cancer. It is crucial to take multi-scale information of tissue structure into account in the detection of breast cancer. And thus, it is the key to design an accurate computer-aided detection (CAD) system to capture multi-scale contextual features in a cancerous tissue. In this work, we present a novel graph convolutional neural network for histopathological image classification of breast cancer. The new method, named multi-scale graph wavelet neural network (MS-GWNN), leverages the localization property of spectral graph wavelet to perform multi-scale analysis. By aggregating features at different scales, MS-GWNN can encode the multi-scale contextual interactions in the whole pathological slide. Experimental results on two public datasets demonstrate the superiority of the proposed method. Moreover, through ablation studies, we find that multi-scale analysis has a significant impact on the accuracy of cancer diagnosis.
Breast cancer is one of the leading fatal disease worldwide with high risk control if early discovered. Conventional method for breast screening is x-ray mammography, which is known to be challenging for early detection of cancer lesions. The dense breast structure produced due to the compression process during imaging lead to difficulties to recognize small size abnormalities. Also, inter- and intra-variations of breast tissues lead to significant difficulties to achieve high diagnosis accuracy using hand-crafted features. Deep learning is an emerging machine learning technology that requires a relatively high computation power. Yet, it proved to be very effective in several difficult tasks that requires decision making at the level of human intelligence. In this paper, we develop a new network architecture inspired by the U-net structure that can be used for effective and early detection of breast cancer. Results indicate a high rate of sensitivity and specificity that indicate potential usefulness of the proposed approach in clinical use.
This paper constructs a novel intelligent medical diagnosis system, which can realize automatic communication and breast cancer pathological image recognition. This system contains two main parts, including a pre-training chatbot called M-Chatbot and an improved neural network model of EfficientNetV2-S named EfficientNetV2-SA, in which the activation function in top layers is replaced by ACON-C. Using information retrieval mechanism, M-Chatbot instructs patients to send breast pathological image to EfficientNetV2-SA network, and then the classifier trained by transfer learning will return the diagnosis results. We verify the performance of our chatbot and classification on the extrinsic metrics and BreaKHis dataset, respectively. The task completion rate of M-Chatbot reached 63.33%. For the BreaKHis dataset, the highest accuracy of EfficientNetV2-SA network have achieved 84.71%. All these experimental results illustrate that the proposed model can improve the accuracy performance of image recognition and our new intelligent medical diagnosis system is successful and efficient in providing automatic diagnosis of breast cancer.
We present graph wavelet neural network (GWNN), a novel graph convolutional neural network (CNN), leveraging graph wavelet transform to address the shortcomings of previous spectral graph CNN methods that depend on graph Fourier transform. Different from graph Fourier transform, graph wavelet transform can be obtained via a fast algorithm without requiring matrix eigendecomposition with high computational cost. Moreover, graph wavelets are sparse and localized in vertex domain, offering high efficiency and good interpretability for graph convolution. The proposed GWNN significantly outperforms previous spectral graph CNNs in the task of graph-based semi-supervised classification on three benchmark datasets: Cora, Citeseer and Pubmed.
Multi-instance multi-label (MIML) learning is a challenging problem in many aspects. Such learning approaches might be useful for many medical diagnosis applications including breast cancer detection and classification. In this study subset of digiPATH dataset (whole slide digital breast cancer histopathology images) are used for training and evaluation of six state-of-the-art MIML methods. At the end, performance comparison of these approaches are given by means of effective evaluation metrics. It is shown that MIML-kNN achieve the best performance that is %65.3 average precision, where most of other methods attain acceptable results as well.
In the last few years, deep learning classifiers have shown promising results in image-based medical diagnosis. However, interpreting the outputs of these models remains a challenge. In cancer diagnosis, interpretability can be achieved by localizing the region of the input image responsible for the output, i.e. the location of a lesion. Alternatively, segmentation or detection models can be trained with pixel-wise annotations indicating the locations of malignant lesions. Unfortunately, acquiring such labels is labor-intensive and requires medical expertise. To overcome this difficulty, weakly-supervised localization can be utilized. These methods allow neural network classifiers to output saliency maps highlighting the regions of the input most relevant to the classification task (e.g. malignant lesions in mammograms) using only image-level labels (e.g. whether the patient has cancer or not) during training. When applied to high-resolution images, existing methods produce low-resolution saliency maps. This is problematic in applications in which suspicious lesions are small in relation to the image size. In this work, we introduce a novel neural network architecture to perform weakly-supervised segmentation of high-resolution images. The proposed model selects regions of interest via coarse-level localization, and then performs fine-grained segmentation of those regions. We apply this model to breast cancer diagnosis with screening mammography, and validate it on a large clinically-realistic dataset. Measured by Dice similarity score, our approach outperforms existing methods by a large margin in terms of localization performance of benign and malignant lesions, relatively improving the performance by 39.6% and 20.0%, respectively. Code and the weights of some of the models are available at https://github.com/nyukat/GLAM