Do you want to publish a course? Click here

Model-independent constraints on cosmic curvature: implication from the future gravitational wave observation DECIGO

89   0   0.0 ( 0 )
 Added by Xiaogang Zheng
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A model-independent test of the cosmic curvature parameter $Omega_k$ is very important in cosmology. In order to estimate cosmic curvature from cosmological probes like standard candles, one has to be able to measure the luminosity distance $D_L(z)$, its derivative with respect to redshift $D_L(z)$ and independently know the expansion rate $H(z)$ at the same redshift. In this paper, we study how such an idea could be implemented with the future generation of space-based DECi-hertz Interferometer Gravitational-wave Observatory (DECIGO), in combination with cosmic chronometers providing cosmology-independent $H(z)$ data. Our results show that for the Hubble diagram of simulated DECIGO data acting as a new type of standard siren, it would be able to constrain cosmic curvature with the precision of $Delta Omega_k= 0.09$ with the currently available sample of 31 measurements of Hubble parameters. In the framework of the third generation ground-based gravitational wave detectors, the spatial curvature is constrained to be $DeltaOmega_k= 0.13$ for Einstein Telescope (ET). More interestingly, compared to other approaches aiming for model-independent estimations of spatial curvature, our analysis also achieves the reconstruction of the evolution of $Omega_k(z)$, in the framework of a model-independent method of Gaussian processes (GP) without assuming a specific form. Therefore, one can expect that the newly emerged gravitational wave astronomy can become useful in local measurements of cosmic curvature using distant sources.

rate research

Read More

Since gravitational waves (GWs) propagate freely through a perfect fluid, coalescing compact binary systems as standard sirens allow to measure the luminosity distance directly and provide distance measurements unaffected by the cosmic opacity. DECi-hertz Interferometer Gravitational-wave Observatory (DECIGO) is a future Japanese space gravitational-wave antenna sensitive to frequency range between target frequencies of LISA and ground-based detectors. Combining the predicted future GW observations from DECIGO and three current popular astrophysical probes (HII regions, SNe Ia Pantheon sample, quasar sample) in electromagnetic (EM) domains, one would be able to probe the opacity of the Universe at different redshifts. In this paper, we show that the cosmic opacity parameter can be constrained to a high precision ($Delta epsilonsim 10^{-2}$) out to high redshifts ($zsim$5). In order to reconstruct the evolution of cosmic opacity without assuming any particular functional form of it, the cosmic opacity tests should be applied to individual redshift bins independently. Therefore, we also calculate the optical depth at individual redshifts and averaged $tau(z)$ within redshift bins. Our findings indicate that, compared with the results obtained from the HII galaxies and Pantheon SNe Ia, there is an improvement in precision when the quasar sample is considered. While non-zero optical depth is statistically significant only for redshift ranges $0<z<0.5$, $1<z<2$, and $2.5<z<3.5$, such tendency is different from that obtained in the framework of its parametrized form. Therefore the importance of cosmic-opacity test without a prescribed phenomenological function should be emphasized.
The cosmic curvature ($Omega_k$) is a fundamental parameter for cosmology. In this paper, we propose an improved model-independent method to constrain the cosmic curvature, which is geometrically related to the Hubble parameter $H(z)$ and luminosity distance $D_L(z)$. Using the currently largest $H(z)$ sample from the well-known cosmic chronometers, as well as the luminosity distance $D_L(z)$ from the relation between the UV and X-ray luminosities of 1598 quasars and the newly-compiled Pantheon sample including 1048 SNe Ia, 31 independent measurements of the cosmic curvature $Omega_k(z)$ can be expected covering the redshift range of $0.07<z<2$. Our estimation of $Omega_k(z)$ is fully compatible with flat Universe at the current level of observational precision. Meanwhile, we find that, for the Hubble diagram of 1598 quasars as a new type of standard candle, the spatial curvature is constrained to be $Omega_k=0.08pm0.31$. For the latest Pantheon sample of SNe Ia observations, we obtain $Omega_k= -0.02pm0.14$. Compared to other approaches aiming for model-independent estimations of spatial curvature, our analysis also achieves constraints with competitive precision. More interestingly, it is suggested that the reconstructed curvature $Omega_k$ is negative in the high redshift region, which is also consistent with the results from the model-dependent constraints in the literature. Such findings are confirmed by our reconstructed evolution of $Omega_k(z)$, in the framework of a model-independent method of Gaussian processes (GP) without assuming a specific form.
We use current measurements of the expansion rate $H(z)$ and cosmic background radiation bounds on the spatial curvature of the Universe to impose cosmological model-independent constraints on cosmic opacity. To perform our analyses, we compare opacity-free distance modulus from $H(z)$ data with those from two supernovae Ia compilations: the Union2.1 plus the most distant spectroscopically confirmed SNe Ia (SNe Ia SCP-0401 $z=1.713$) and two Sloan Digital Sky Survey (SDSS) subsamples. The influence of different SNe Ia light-curve fitters (SALT2 and MLCS2K2) on the results is also verified. We find that a completely transparent universe is in agreement with the largest sample in our analysis (Union 2.1 plus SNe Ia SCP-0401). For SDSS sample a such universe it is compatible at $< 1.5sigma$ level regardless the SNe Ia light-curve fitting used.
We combine new analysis of the stochastic gravitational wave background to be expected from cosmic strings with the latest pulsar timing array (PTA) limits to give an upper bound on the energy scale of the possible cosmic string network, $Gmu < 1.5times 10^{-11}$ at the 95% confidence level. We also show bounds from LIGO and to be expected from LISA and BBO. Current estimates for the gravitational wave background from supermassive black hole binaries are at the level where a PTA detection is expected. But if PTAs do observe a background soon, it will be difficult in the short term to distinguish black holes from cosmic strings as the source, because the spectral indices from the two sources happen to be quite similar. If PTAs do not observe a background, then the limits on $Gmu$ will improve somewhat, but a string network with $Gmu$ substantially below $10^{-11}$ will produce gravitational waves primarily at frequencies too high for PTA observation, so significant further progress will depend on intermediate-frequency observatories such as LISA, DECIGO and BBO.
Applying the distance sum rule in strong gravitational lensing (SGL) and type Ia supernova (SN Ia) observations, one can provide an interesting cosmological model-independent method to determine the cosmic curvature parameter $Omega_k$. In this paper, with the newly compiled data sets including 161 galactic-scale SGL systems and 1048 SN Ia data, we place constraints on $Omega_k$ within the framework of three types of lens models extensively used in SGL studies. Moreover, to investigate the effect of different mass lens samples on the results, we divide the SGL sample into three sub-samples based on the center velocity dispersion of intervening galaxies. In the singular isothermal sphere (SIS) and extended power-law lens models, a flat universe is supported with the uncertainty about 0.2, while a closed universe is preferred in the power-law lens model. We find that the choice of lens models and the classification of SGL data actually can influence the constraints on $Omega_k$ significantly.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا