Do you want to publish a course? Click here

Radio frequency reflectometry in silicon-based quantum dots

131   0   0.0 ( 0 )
 Added by Yinyu Liu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

RF reflectometry offers a fast and sensitive method for charge sensing and spin readout in gated quantum dots. We focus in this work on the implementation of RF readout in accumulation-mode gate-defined quantum dots, where the large parasitic capacitance poses a challenge. We describe and test two methods for mitigating the effect of the parasitic capacitance, one by on-chip modifications and a second by off-chip changes. We demonstrate that these methods enable high-performance charge readout in Si/SiGe quantum dots, achieving a fidelity of 99.9% for a measurement time of 1 $mu$s.



rate research

Read More

Spin qubits in silicon quantum dots offer a promising platform for a quantum computer as they have a long coherence time and scalability. The charge sensing technique plays an essential role in reading out the spin qubit as well as tuning the device parameters and therefore its performance in terms of measurement bandwidth and sensitivity is an important factor in spin qubit experiments. Here we demonstrate fast and sensitive charge sensing by a radio-frequency reflectometry of an undoped, accumulation-mode Si/SiGe double quantum dot. We show that the large parasitic capacitance in typical accumulation-mode gate geometries impedes reflectometry measurements. We present a gate geometry that significantly reduces the parasitic capacitance and enables fast single-shot readout. The technique allows us to distinguish between the singly- and doubly-occupied two-electron states under the Pauli spin blockade condition in an integration time of 0.8 {mu}s, the shortest value ever reported in silicon, by the signal-to-noise ratio of 6. These results provide a guideline for designing silicon spin qubit devices suitable for the fast and high-fidelity readout.
We investigate gate voltage dependence of electrical readout noise in high-speed rf reflectometry using gallium arsenide quantum dots. The fast Fourier transform spectrum from the real time measurement reflects build-in device noise and circuit noise including the resonator and the amplifier. We separate their noise spectral components by model analysis. Detail of gate voltage dependence of the flicker noise is investigated and compared to the charge sensor sensitivity. We point out that the dominant component of the readout noise changes by the measurement integration time.
Spins in silicon quantum devices are promising candidates for large-scale quantum computing. Gate-based sensing of spin qubits offers compact and scalable readout with high fidelity, however further improvements in sensitivity are required to meet the fidelity thresholds and measurement timescales needed for the implementation of fast-feedback in error correction protocols. Here, we combine radio-frequency gate-based sensing at 622 MHz with a Josephson parametric amplifier (JPA), that operates in the 500-800 MHz band, to reduce the integration time required to read the state of a silicon double quantum dot formed in a nanowire transistor. Based on our achieved signal-to-noise ratio (SNR), we estimate that singlet-triplet single-shot readout with an average fidelity of 99.7% could be performed in 1 $mu$s, well-below the requirements for fault-tolerant readout and 30 times faster than without the JPA. Additionally, the JPA allows operation at a lower RF power while maintaining identical SNR. We determine a noise temperature of 200 mK with a contribution from the JPA (25%), cryogenic amplifier (25%) and the resonator (50%), showing routes to further increase the read-out speed.
Gate-controlled silicon quantum devices are currently moving from academic proof-of-principle studies to industrial fabrication, while increasing their complexity from single- or double-dot devices to larger arrays. We perform gate-based high-frequency reflectometry measurements on a 2x2 array of silicon quantum dots fabricated entirely using 300 mm foundry processes. Utilizing the capacitive couplings within the dot array, it is sufficient to connect only one gate electrode to one reflectometry resonator and still establish single-electron occupation in each of the four dots and detect single-electron movements with high bandwidth. A global top-gate electrode adjusts the overall tunneling times, while linear combinations of side-gate voltages yield detailed charge stability diagrams. We support our findings with $mathbf{k}cdotmathbf{p}$ modeling and electrostatic simulations based on a constant interaction model, and experimentally demonstrate single-shot detection of interdot charge transitions with unity signal-to-noise ratios at bandwidths exceeding 30 kHz. Our techniques may find use in the scaling of few-dot spin-qubit devices to large-scale quantum processors.
The presence of valley states is a significant obstacle to realizing quantum information technologies in Silicon quantum dots, as leakage into alternate valley states can introduce errors into the computation. We use a perturbative analytical approach to study the dynamics of exchange-coupled quantum dots with valley degrees of freedom. We show that if the valley splitting is large and electrons are not properly initialized to valley eigenstates, then time evolution of the system will lead to spin-valley entanglement. Spin-valley entanglement will also occur if the valley splitting is small and electrons are not initialized to the same valley state. Additionally, we show that for small valley splitting, spin-valley entanglement does not affect measurement probabilities of two-qubit systems; however, systems with more qubits will be affected. This means that two-qubit gate fidelities measured in two-qubit systems may miss the effects of valley degrees of freedom. Our work shows how the existence of valleys may adversely affect multiqubit fidelities even when the system temperature is very low.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا