Do you want to publish a course? Click here

Electric field driven octahedral rotation in perovskite

143   0   0.0 ( 0 )
 Added by Wonshik Kyung
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Rotation of MO6 (M = transition metal) octahedra is a key determinant of the physical properties of perovskite materials. Therefore, tuning physical properties, one of the most important goals in condensed matter research, may be accomplished by controlling octahedral rotation (OR). In this study, it is demonstrated that OR can be driven by an electric field in Sr$_2$RuO$_4$. Rotated octahedra in the surface layer of Sr$_2$RuO$_4$ are restored to the unrotated bulk structure upon dosing the surface with K. Theoretical investigation shows that OR in Sr$_2$RuO$_4$ originates from the surface electric field, which can be tuned via the screening effect of the overlaid K layer. This work establishes not only that variation in the OR angle can be induced by an electric field, but also provides a way to control OR, which is an important step towards in situ control of the physical properties of perovskite oxides.



rate research

Read More

We report the relationship between epitaxial strain and the crystallographic orientation of the in-phase rotation axis and A-site displacements in Pbnm-type perovskite films. Synchrotron diffraction measurements of EuFeO3 films under strain states ranging from 2% compressive to 0.9% tensile on cubic or rhombohedral substrates exhibit a combination of a-a+c- and a+a-c- rotational patterns. We compare the EuFeO3 behavior with previously reported experimental and theoretical work on strained Pbnm-type films on non-orthorhombic substrates, as well as additional measurements from LaGaO3, LaFeO3, and Eu0.7Sr0.3MnO3 films on SrTiO3. Compiling the results from various material systems reveals a general strain dependence in which compressive strain strongly favors a-a+c- and a+a-c- rotation patterns and tensile strain weakly favors a-a-c+ structures. In contrast, EuFeO3 films grown on Pbnm-type GdScO3 under 2.3% tensile strain take on a uniform a-a+c- rotation pattern imprinted from the substrate, despite strain energy considerations that favor the a-a-c+ pattern. These results point to the use of substrate imprinting as a more robust route than strain for tuning the crystallographic orientations of the octahedral rotations and A-site displacements needed to realize rotation-induced hybrid improper ferroelectricity in oxide heterostructures.
Epitaxial strain is a proven route to enhancing the properties of complex oxides, however, the details of how the atomic structure accommodates strain are poorly understood due to the difficulty of measuring the oxygen positions in thin films. We present a general methodology for determining the atomic structure of strained oxide films via x-ray diffraction, which we demonstrate using LaNiO3 films. The oxygen octahedral rotations and distortions have been quantified by comparing the intensities of half-order Bragg peaks, arising from the two unit cell periodicity of the octahedral rotations, with the calculated structure factor. Combining ab initio density functional calculations with these experimental results, we determine systematically how strain modifies the atomic structure of this functional oxide.
The dynamic observation of domain wall motion induced by electric field in magnetoelectric iron garnet film is reported. Measurements in 800 kV/cm electric field pulses gave the domain wall velocity ~45 m/s. Similar velocity was achieved in magnetic field pulse about 50 Oe. Reversible and irreversible micromagnetic structure transformation is demonstrated. These effects are promising for applications in spintronics and magnetic memory.
We find that in BaTiO$_3$ the phonon angular momentum is dominantly pointing in directions perpendicular to the electrical polarization. Therefore, external electric field in ferroelectric BaTiO$_3$ does not control only the direction of electrical polarization, but also the direction of phonon angular momentum. This finding opens up the possibility for electric-field control of physical phenomena that rely on phonon angular momentum. We construct an intuitive model, based on our first-principles calculations, that captures the origin of the relationship between phonon angular momentum and electric polarization.
We report on the electric field control of magnetic phase transition temperatures in multiferroic Ni3V2O8 thin films. Using magnetization measurements, we find that the phase transition temperature to the canted antiferromagnetic state is suppressed by 0.2 K in an electric field of 30 MV/m, as compared to the unbiased sample. Dielectric measurements show that the transition temperature into the magnetic state associated with ferroelectric order increases by 0.2 K when the sample is biased at 25 MV/m. This electric field control of the magnetic transitions can be qualitatively understood using a mean field model incorporating a tri-linear coupling between the magnetic order parameters and spontaneous polarization.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا