Do you want to publish a course? Click here

Automatic Curriculum Learning With Over-repetition Penalty for Dialogue Policy Learning

109   0   0.0 ( 0 )
 Added by Yangyang Zhao
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Dialogue policy learning based on reinforcement learning is difficult to be applied to real users to train dialogue agents from scratch because of the high cost. User simulators, which choose random user goals for the dialogue agent to train on, have been considered as an affordable substitute for real users. However, this random sampling method ignores the law of human learning, making the learned dialogue policy inefficient and unstable. We propose a novel framework, Automatic Curriculum Learning-based Deep Q-Network (ACL-DQN), which replaces the traditional random sampling method with a teacher policy model to realize the dialogue policy for automatic curriculum learning. The teacher model arranges a meaningful ordered curriculum and automatically adjusts it by monitoring the learning progress of the dialogue agent and the over-repetition penalty without any requirement of prior knowledge. The learning progress of the dialogue agent reflects the relationship between the dialogue agents ability and the sampled goals difficulty for sample efficiency. The over-repetition penalty guarantees the sampled diversity. Experiments show that the ACL-DQN significantly improves the effectiveness and stability of dialogue tasks with a statistically significant margin. Furthermore, the framework can be further improved by equipping with different curriculum schedules, which demonstrates that the framework has strong generalizability.



rate research

Read More

158 - Yixuan Su , Deng Cai , Qingyu Zhou 2020
We study the learning of a matching model for dialogue response selection. Motivated by the recent finding that models trained with random negative samples are not ideal in real-world scenarios, we propose a hierarchical curriculum learning framework that trains the matching model in an easy-to-difficult scheme. Our learning framework consists of two complementary curricula: (1) corpus-level curriculum (CC); and (2) instance-level curriculum (IC). In CC, the model gradually increases its ability in finding the matching clues between the dialogue context and a response candidate. As for IC, it progressively strengthens the models ability in identifying the mismatching information between the dialogue context and a response candidate. Empirical studies on three benchmark datasets with three state-of-the-art matching models demonstrate that the proposed learning framework significantly improves the model performance across various evaluation metrics.
79 - Daniel Campos 2021
Language Models like ELMo and BERT have provided robust representations of natural language, which serve as the language understanding component for a diverse range of downstream tasks.Curriculum learning is a method that employs a structured training regime instead, which has been leveraged in computer vision and machine translation to improve model training speed and model performance. While language models have proven transformational for the natural language processing community, these models have proven expensive, energy-intensive, and challenging to train. In this work, we explore the effect of curriculum learning on language model pretraining using various linguistically motivated curricula and evaluate transfer performance on the GLUE Benchmark. Despite a broad variety of training methodologies and experiments we do not find compelling evidence that curriculum learning methods improve language model training.
165 - Stefan Ultes 2020
Learning suitable and well-performing dialogue behaviour in statistical spoken dialogue systems has been in the focus of research for many years. While most work which is based on reinforcement learning employs an objective measure like task success for modelling the reward signal, we use a reward based on user satisfaction estimation. We propose a novel estimator and show that it outperforms all previous estimators while learning temporal dependencies implicitly. Furthermore, we apply this novel user satisfaction estimation model live in simulated experiments where the satisfaction estimation model is trained on one domain and applied in many other domains which cover a similar task. We show that applying this model results in higher estimated satisfaction, similar task success rates and a higher robustness to noise.
Most existing approaches for goal-oriented dialogue policy learning used reinforcement learning, which focuses on the target agent policy and simply treat the opposite agent policy as part of the environment. While in real-world scenarios, the behavior of an opposite agent often exhibits certain patterns or underlies hidden policies, which can be inferred and utilized by the target agent to facilitate its own decision making. This strategy is common in human mental simulation by first imaging a specific action and the probable results before really acting it. We therefore propose an opposite behavior aware framework for policy learning in goal-oriented dialogues. We estimate the opposite agents policy from its behavior and use this estimation to improve the target agent by regarding it as part of the target policy. We evaluate our model on both cooperative and competitive dialogue tasks, showing superior performance over state-of-the-art baselines.
143 - Lei Zhou , Liang Ding , Kevin Duh 2021
In the field of machine learning, the well-trained model is assumed to be able to recover the training labels, i.e. the synthetic labels predicted by the model should be as close to the ground-truth labels as possible. Inspired by this, we propose a self-guided curriculum strategy to encourage the learning of neural machine translation (NMT) models to follow the above recovery criterion, where we cast the recovery degree of each training example as its learning difficulty. Specifically, we adopt the sentence level BLEU score as the proxy of recovery degree. Different from existing curricula relying on linguistic prior knowledge or third-party language models, our chosen learning difficulty is more suitable to measure the degree of knowledge mastery of the NMT models. Experiments on translation benchmarks, including WMT14 English$Rightarrow$German and WMT17 Chinese$Rightarrow$English, demonstrate that our approach can consistently improve translation performance against strong baseline Transformer.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا