No Arabic abstract
In this paper, we consider scalable output and regulated output synchronization problems for heterogeneous networks of right-invertible linear agents based on localized information exchange where in the case of regulated output synchronization, the reference trajectory is generated by a so-called exosystem. We assume that all the agents are introspective, meaning that they have access to their own local measurements. We propose a scale-free linear protocol for each agent to achieve output and regulated output synchronizations. These protocols are designed solely based on agent models and they need no information about communication graph and the number of agents or other agent models information.
This paper studies scale-free protocol design for H_infty almost output and regulated output synchronization of heterogeneous multi-agent systems with linear, right-invertible, and introspective agents in presence of external disturbances. The collaborative linear protocol designs are based on localized information exchange over the same communication network, which do not require any knowledge of the directed network topology and spectrum of the associated Laplacian matrix. Moreover, the proposed scale-free protocols achieve H_infty almost synchronization with a given arbitrary degree of accuracy for any size of the network.
This paper studies output synchronization problems for heterogeneous networks of continuous- or discrete-time right-invertible linear agents in presence of unknown, non-uniform and arbitrarily large input delay based on localized information exchange. It is assumed that all the agents are introspective, meaning that they have access to their own local measurements. Universal linear protocols are proposed for each agent to achieve output synchronizations. Proposed protocols are designed solely based on the agent models using no information about communication graph and the number of agents or other agent models information. Moreover, the protocols can tolerate arbitrarily large input delays.
This paper studies synchronization of homogeneous and heterogeneous discrete-time multi-agent systems. A class of linear dynamic protocol design methodology is developed based on localized information exchange with neighbors which does not need any knowledge of the directed network topology and the spectrum of the associated Laplacian matrix. The main contribution of this paper is that the proposed protocols are scale-free and achieve synchronization for arbitrary number of agents.
This paper deals with the H2 suboptimal output synchronization problem for heterogeneous linear multi-agent systems. Given a multi-agent system with possibly distinct agents and an associated H2 cost functional, the aim is to design output feedback based protocols that guarantee the associated cost to be smaller than a given upper bound while the controlled network achieves output synchronization. A design method is provided to compute such protocols. For each agent, the computation of its two local control gains involves two Riccati inequalities, each of dimension equal to the state space dimension of the agent. A simulation example is provided to illustrate the performance of the proposed protocols.
This paper deals with data-driven output synchronization for heterogeneous leader-follower linear multi-agent systems. Given a multi-agent system that consists of one autonomous leader and a number of heterogeneous followers with external disturbances, we provide necessary and sufficient data-based conditions for output synchronization. We also provide a design method for obtaining such output synchronizing protocols directly from data. The results are then extended to the special case that the followers are disturbance-free. Finally, a simulation example is provided to illustrate our results.