Do you want to publish a course? Click here

Stark many-body localization: Evidence for Hilbert-space shattering

126   0   0.0 ( 0 )
 Added by Elmer Doggen
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the dynamics of an interacting quantum spin chain under the application of a linearly increasing field. This model exhibits a type of localization known as Stark many-body localization. The dynamics shows a strong dependence on the initial conditions, indicating that the system violates the conventional (strong) eigenstate thermalization hypothesis at any finite gradient of the field. This is contrary to reports of a numerically observed ergodic phase. Therefore, the localization is crucially distinct from disorder-driven many-body localization, in agreement with recent predictions on the basis of localization via Hilbert-space shattering.



rate research

Read More

Using numerically exact methods we study transport in an interacting spin chain which for sufficiently strong spatially constant electric field is expected to experience Stark many-body localization. We show that starting from a generic initial state, a spin-excitation remains localized only up to a finite delocalization time, which depends exponentially on the size of the system and the strength of the electric field. This suggests that bona fide Stark many-body localization occurs only in the thermodynamic limit. We also demonstrate that the transient localization in a finite system and for electric fields stronger than the interaction strength can be well approximated by a Magnus expansion up-to times which grow with the electric field strength.
Recent developments in matrix-product-state (MPS) investigations of many-body localization (MBL) are reviewed, with a discussion of benefits and limitations of the method. This approach allows one to explore the physics around the MBL transition in systems much larger than those accessible to exact diagonalization. System sizes and length scales that can be controllably accessed by the MPS approach are comparable to those studied in state-of-the-art experiments. Results for 1D, quasi-1D, and 2D random systems, as well as 1D quasi-periodic systems are presented. On time scales explored (up to $t approx 300$ in units set by the hopping amplitude), a slow, subdiffusive transport in a rather broad disorder range on the ergodic side of the MBL transition is found. For 1D random spin chains, which serve as a standard model of the MBL transition, the MPS study demonstrates a substantial drift of the critical point $W_c(L)$ with the system size $L$: while for $L approx 20$ we find $W_c approx 4$, as also given by exact diagonalization, the MPS results for $L = 50$--100 provide evidence that the critical disorder saturates, in the large-$L$ limit, at $W_c approx 5.5$. For quasi-periodic systems, these finite-size effects are much weaker, which suggests that they can be largely attributed to rare events. For quasi-1D ($dtimes L$, with $d ll L$) and 2D ($Ltimes L$) random systems, the MPS data demonstrate an unbounded growth of $W_c$ in the limit of large $d$ and $L$, in agreement with analytical predictions based on the rare-event avalanche theory.
We propose a method for detecting many-body localization (MBL) in disordered spin systems. The method involves pulsed, coherent spin manipulations that probe the dephasing of a given spin due to its entanglement with a set of distant spins. It allows one to distinguish the MBL phase from a non-interacting localized phase and a delocalized phase. In particular, we show that for a properly chosen pulse sequence the MBL phase exhibits a characteristic power-law decay reflecting its slow growth of entanglement. We find that this power-law decay is robust with respect to thermal and disorder averaging, provide numerical simulations supporting our results, and discuss possible experimental realizations in solid-state and cold atom systems.
We investigate the phase transition between an ergodic and a many-body localized phase in infinite anisotropic spin-$1/2$ Heisenberg chains with binary disorder. Starting from the Neel state, we analyze the decay of antiferromagnetic order $m_s(t)$ and the growth of entanglement entropy $S_{textrm{ent}}(t)$ during unitary time evolution. Near the phase transition we find that $m_s(t)$ decays exponentially to its asymptotic value $m_s(infty) eq 0$ in the localized phase while the data are consistent with a power-law decay at long times in the ergodic phase. In the localized phase, $m_s(infty)$ shows an exponential sensitivity on disorder with a critical exponent $ usim 0.9$. The entanglement entropy in the ergodic phase grows subballistically, $S_{textrm{ent}}(t)sim t^alpha$, $alphaleq 1$, with $alpha$ varying continuously as a function of disorder. Exact diagonalizations for small systems, on the other hand, do not show a clear scaling with system size and attempts to determine the phase boundary from these data seem to overestimate the extent of the ergodic phase.
Sufficient disorder is believed to localize static and periodically-driven interacting chains. With quasiperiodic driving by $D$ incommensurate tones, the fate of this many-body localization (MBL) is unknown. We argue that randomly disordered MBL exists for $D=2$, but not for $D geq 3$. Specifically, a putative two-tone driven MBL chain is neither destabilized by thermal avalanches seeded by rare thermal regions, nor by the proliferation of long-range many-body resonances. For $D geq 3$, however, sufficiently large thermal regions have continuous local spectra and slowly thermalize the entire chain. En route, we generalize the eigenstate thermalization hypothesis to the quasiperiodically-driven setting, and verify its predictions numerically. Two-tone driving enables new topological orders with edge signatures; our results suggest that localization protects these orders indefinitely.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا