Do you want to publish a course? Click here

Modeling Dispositional and Initial learned Trust in Automated Vehicles with Predictability and Explainability

146   0   0.0 ( 0 )
 Added by Feng Zhou
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Technological advances in the automotive industry are bringing automated driving closer to road use. However, one of the most important factors affecting public acceptance of automated vehicles (AVs) is the publics trust in AVs. Many factors can influence peoples trust, including perception of risks and benefits, feelings, and knowledge of AVs. This study aims to use these factors to predict peoples dispositional and initial learned trust in AVs using a survey study conducted with 1175 participants. For each participant, 23 features were extracted from the survey questions to capture his or her knowledge, perception, experience, behavioral assessment, and feelings about AVs. These features were then used as input to train an eXtreme Gradient Boosting (XGBoost) model to predict trust in AVs. With the help of SHapley Additive exPlanations (SHAP), we were able to interpret the trust predictions of XGBoost to further improve the explainability of the XGBoost model. Compared to traditional regression models and black-box machine learning models, our findings show that this approach was powerful in providing a high level of explainability and predictability of trust in AVs, simultaneously.



rate research

Read More

127 - Yaohui Guo , X. Jessie Yang 2020
Trust in automation, or more recently trust in autonomy, has received extensive research attention in the past two decades. The majority of prior literature adopted a snapshot view of trust and typically evaluated trust through questionnaires administered at the end of an experiment. This snapshot view, however, does not acknowledge that trust is a time-variant variable that can strengthen or decay over time. To fill the research gap, the present study aims to model trust dynamics when a human interacts with a robotic agent over time. The underlying premise of the study is that by interacting with a robotic agent and observing its performance over time, a rational human agent will update his/her trust in the robotic agent accordingly. Based on this premise, we develop a personalized trust prediction model based on Beta distribution and learn its parameters using Bayesian inference. Our proposed model adheres to three major properties of trust dynamics reported in prior empirical studies. We tested the proposed method using an existing dataset involving 39 human participants interacting with four drones in a simulated surveillance mission. The proposed method obtained a Root Mean Square Error (RMSE) of 0.072, significantly outperforming existing prediction methods. Moreover, we identified three distinctive types of trust dynamics, the Bayesian decision maker, the oscillator, and the disbeliever, respectively. This prediction model can be used for the design of individualized and adaptive technologies.
Trust is a multilayered concept with critical relevance when it comes to introducing new technologies. Understanding how humans will interact with complex vehicle systems and preparing for the functional, societal and psychological aspects of autonomous vehicles entry into our cities is a pressing concern. Design tools can help calibrate the adequate and affordable level of trust needed for a safe and positive experience. This study focuses on passenger interactions capable of enhancing the system trustworthiness and data accuracy in future shared public transportation.
Intelligent Transportation System (ITS) has become one of the essential components in Industry 4.0. As one of the critical indicators of ITS, efficiency has attracted wide attention from researchers. However, the next generation of urban traffic carried by multiple transport service providers may prohibit the raw data interaction among multiple regions for privacy reasons, easily ignored in the existing research. This paper puts forward a federated learning-based vehicle control framework to solve the above problem, including interactors, trainers, and an aggregator. In addition, the density-aware model aggregation method is utilized in this framework to improve vehicle control. What is more, to promote the performance of the end-to-end learning algorithm in the safety aspect, this paper proposes an imitation learning algorithm, which can obtain collision avoidance capabilities from a set of collision avoidance rules. Furthermore, a loss-aware experience selection strategy is also explored, reducing the communication overhead between the interactors and the trainers via extra computing. Finally, the experiment results demonstrate that the proposed imitation learning algorithm obtains the ability to avoid collisions and reduces discomfort by 55.71%. Besides, density-aware model aggregation can further reduce discomfort by 41.37%, and the experience selection scheme can reduce the communication overhead by 12.80% while ensuring model convergence.
In this study, we investigated the effectiveness and user acceptance of three external interaction modalities (i.e., visual, auditory, and visual+auditory) in promoting communications between automated vehicle systems (AVS) and pedestrians at a crosswalk through a large number of combined designs. For this purpose, an online survey was designed and distributed to 68 participants. All participants reported their overall preferences for safety, comfort, trust, ease of understanding, usability, and acceptance towards the systems. Results showed that the visual+auditory interaction modality was the mostly preferred, followed by the visual interaction modality and then the auditory one. We also tested different visual and auditory interaction methods, and found that Pedestrian silhouette on the front of the vehicle was the best preferred option while middle-aged participants liked Chime much better than young participants though it was overall better preferred than others. Finally, communication between the AVS and pedestrians phones was not well received due to privacy concerns. These results provided important interface design recommendations in identifying better combination of visual and auditory designs and therefore improving AVS communicating their intention with pedestrians.
We provide an ice friction model for vehicle dynamics of a two-man bobsled which can be used for driver evaluation and in a driver-in-the-loop simulator. Longitudinal friction is modeled by combining experimental results with finite element simulations to yield a correlation between contact pressure and friction. To model lateral friction, we collect data from 44 bobsleigh runs using special sensors. Non-linear regression is used to fit a bob-specific one-track vehicle dynamics model to the data. It is applied in driving simulation and enables a novel method for bob driver evaluation. Bob drivers with various levels of experience are investigated. It shows that a similar performance of the top drivers results from different driving styles.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا