No Arabic abstract
Focused on the generation and evolution of vast complementary pairs of the primary fission fragments at scission moment, Dinuclear and Statistical Model (DSM) is proposed. (1) It is assumed that the fissile nucleus elongates along a symmetric coaxis until it breaks into two primary fission fragments. (2) Every complementary pair of the primary fission fragments is approximatively described as two ellipsoids with large deformation at scission moment. (3) The kinetic energy in every complementary pair of the primary fragments is mainly provided by Coulomb repulsion, which is explicitly expressed through strict six-dimensional integrals. (4) Only three phenomenological coefficients are obtained to globally describe the quadrupole deformation parameters of arbitrary primary fragments both for $^{235}$U($n_{th}, f$) and $^{239}$Pu($n_{th}, f$) reactions, on the basis of the common characteristics of the measured data, such as mass and charge distributions, kinetic energy distributions. In the framework of DSM, the explicit average total kinetic energy distribution $overline{TKE}(A)$ and the average kinetic energy distribution $overline{KE}(A)$ are consistently represented. The theoretical results in this paper agree well with the experimental data. Furthermore, this model is expected as the reliable approach to generally evaluate the corresponding observebles for thermal neutron-induced fission of actinides.
The mass and kinetic energy distribution of nuclear fragments from thermal neutron-induced fission of 235U have been studied using a Monte-Carlo simulation. Besides reproducing the pronounced broadening in the standard deviation of the kinetic energy at the final fragment mass number around m = 109, our simulation also produces a second broadening around m = 125. These results are in good agreement with the experimental data obtained by Belhafaf et al. and other results on yield of mass. We conclude that the obtained results are a consequence of the characteristics of the neutron emission, the sharp variation in the primary fragment kinetic energy and mass yield curves. We show that because neutron emission is hazardous to make any conclusion on primary quantities distribution of fragments from experimental results on final quantities distributions.
We have measured the total kinetic energy (TKE) release for the $^{235}$U(n,f) reaction for $E_{n}$=2-100 MeV using the 2E method with an array of Si PIN diode detectors. The neutron energies were determined by time of flight measurements using the white spectrum neutron beam at the LANSCE facility. To benchmark the TKE measurement, the TKE release for $^{235}$U(n$_{th}$,f) was also measured using a thermal neutron beam from the Oregon State University TRIGA reactor, giving pre-neutron emission $E^*_{TKE}=170.7pm0.4$ MeV in good agreement with known values. Our measurements are thus absolute measurements. The TKE in $^{235}$U(n,f) decreases non-linearly from 169 MeV to 161 MeV for $E_{n}$=2-100 MeV. The multi-modal fission analysis of mass distributions and TKE indicates the origin of the TKE decrease with increasing neutron energy is a consequence of the fade out of asymmetric fission, which is associated with a higher TKE compared to symmetric fission. The average TKE associated with the superlong, standard I and standard II modes for a given mass is independent of neutron energy. The widths of the TKE distributions are constant from $E_{n}$=20-100 MeV and hence show no dependence with excitation energy.
We have measured the total kinetic energy (TKE) release for the $^{235}$U(n,f) reaction for $E_{n}$=2-100 MeV using the 2E method with an array of Si PIN diode detectors. The neutron energies were determined by time of flight measurements using the white spectrum neutron beam at the LANSCE facility. (To calibrate the apparatus, the TKE release for $^{235}$U(n$_{th}$,f) was also measured using a thermal neutron beam from the OSU TRIGA reactor). The TKE decreases non-linearly from 169.0 MeV to 161.4 MeV for $E_{n}$=2-90 MeV. The standard deviation of the TKE distribution is constant from $E_{n}$=20-90 MeV. Comparison of the data with the multi-modal fission model of Brosa indicates the TKE decrease is a consequence of the growth of symmetric fission and the corresponding decrease of asymmetric fission with increasing neutron energy. The average TKE associated with the Brosa superlong, standard I and standard II modes for a given mass is independent of neutron energy.
The $(n,gamma f)$ process is reviewed in light of modern nuclear reaction calculations in both slow and fast neutron-induced fission reactions on $^{235}$U and $^{239}$Pu. Observed fluctuations of the average prompt fission neutron multiplicity and average total $gamma$-ray energy below 100 eV incident neutron energy are interpreted in this framework. The surprisingly large contribution of the M1 transitions to the pre-fission $gamma$-ray spectrum of $^{239}$Pu is explained by the dominant fission probabilities of 0$^+$ and $2^+$ transition states, which can only be accessed from compound nucleus states formed by the interaction of $s$-wave neutrons with the target nucleus in its ground state, and decaying through M1 transitions. The impact of an additional low-lying M1 scissors mode in the photon strength function is analyzed. We review experimental evidence for fission fragment mass and kinetic energy fluctuations in the resonance region and their importance in the interpretation of experimental data on prompt neutron data in this region. Finally, calculations are extended to the fast energy range where $(n,gamma f)$ corrections can account for up to 3% of the total fission cross section and about 20% of the capture cross section.
The simultaneous measurement of the isotopic fission-fragment yields and fission-fragment velocities of $^{239}$U has been performed for the first time. The $^{239}$U fissioning system was produced in one-neutron transfer reactions between a $^{238}$U beam at 5.88 MeV/nucleon and a $^{9}$Be target. The combination of inverse kinematics at low energy and the use of the VAMOS++ spectrometer at the GANIL facility allows the isotopic identification of the full fission-fragment distribution and their velocity in the reference frame of the fissioning system. The proton and neutron content of the fragments at scission, their total kinetic and total excitation energy, as well as the neutron multiplicity were determined. Information from the scission point configuration is obtained from these observables and the correlation between them. The role of the octupole-deformed proton and neutron shells in the fission-fragment production is discussed.