Asymptotic profile of a two-dimensional chemotaxis--Navier--Stokes system with singular sensitivity and logistic source


Abstract in English

The chemotaxis--Navier--Stokes system begin{equation*}label{0.1} left{begin{array}{ll} n_t+ucdot abla n=triangle n-chi ablacdotp left(displaystylefrac n {c} abla cright)+n(r-mu n), c_t+ucdot abla c=triangle c-nc, u_t+ (ucdot abla) u=Delta u+ abla P+n ablaphi, ablacdot u=0, end{array}right. end{equation*} is considered in a bounded smooth domain $Omega subset mathbb{R}^2$, where $phiin W^{1,infty}(Omega)$, $chi>0$, $rin mathbb{R}$ and $mu> 0$ are given parameters. It is shown that there exists a value $mu_*(Omega,chi, r)geq 0$ such that whenever $ mu>mu_*(Omega,chi, r)$, the global-in-time classical solution to the system is uniformly bounded with respect to $xin Omega$. Moreover, for the case $r>0$, $(n,c,frac {| abla c|}c,u)$ converges to $(frac r mu,0,0,0)$ in $L^infty(Omega)times L^infty(Omega)times L^p(Omega)times L^infty(Omega)$ for any $p>1$ exponentially as $trightarrow infty$, while in the case $r=0$, $(n,c,frac {| abla c|}c,u)$ converges to $(0,0,0,0)$ in $(L^infty(Omega))^4$ algebraically. To the best of our knowledge, these results provide the first precise information on the asymptotic profile of solutions in two dimensions.

Download