Do you want to publish a course? Click here

Clarifying ultrafast carrier dynamics in ultrathin films of the topological insulator Bi2Se3 using transient absorption spectroscopy

102   0   0.0 ( 0 )
 Added by Yuri Glinka
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ultrafast carrier dynamics in the topological insulator Bi2Se3 have recently been intensively studied using a variety of techniques. However, we are not aware of any successful experiments exploiting transient absorption (TA) spectroscopy for these purposes. Here we demonstrate that if the ~730 nm wavelength pumping (~1.7 eV photon energy) is applied to ultrathin Bi2Se3 films, TA spectra cover the entire visible region, thus unambiguously pointing to two-photon excitation (~3.4 eV). The carrier relaxation dynamics is found to be governed by the polar optical phonon cascade emission occurring in both the bulk states and the Dirac surface states (SS), including SS-bulk-SS vertical electron transport and being also exclusively influenced by whether the Dirac point is presented between the Dirac cones of the higher energy (~1.5 eV) Dirac SS (known as SS2). We have recognized that SS2 act as a valve substantially slowing down the relaxation of electrons when the gap between Dirac cones exceeds the polar optical phonon and resonant defects energies. The resulting progressive accumulation of electrons in the gapped SS2 becomes detectable through the inverse bremsstrahlung type free carrier absorption.



rate research

Read More

We investigate the ultrafast transient absorption spectrum of Bi2Se3 topological insulator. Bi2Se3 single crystal is grown through conventional solid-state reaction routevia self-flux method. The structural properties have been studied in terms of high-resolution Powder X-ray Diffraction (PXRD). Detailed Rietveld analysis of PXRD of the crystal showed that sample is crystallized in the rhombohedral crystal structure with a space group of R-3m, and the lattice parameters are a=b=4.14A and c=28.7010A. Scanning Electron Microscopy (SEM) result shows perfectly crystalline structure with layered type morphology which evidenced from surface XRD. Energy Dispersive Spectroscopy (EDS) analysis determined quantitative amounts of the constituent atoms, found to be very close to their stoichiometric ratio. Further the fluence dependent nonlinear behaviour is studied by means of ultrafast transient absorption spectroscopy. The ultrafast spectroscopy also predicts the capability of this single crystal to generate Terahertz (THz) radiations (T-rays).
Understanding the spin-texture behavior of boundary modes in ultrathin topological insulator films is critically essential for the design and fabrication of functional nano-devices. Here by using spin-resolved photoemission spectroscopy with p-polarized light in topological insulator Bi2Se3 thin films, we report tunneling-dependent evolution of spin configuration in topological insulator thin films across the metal-to-insulator transition. We observe strongly binding energy- and wavevector-dependent spin polarization for the topological surface electrons in the ultra-thin gapped-Dirac-cone limit. The polarization decreases significantly with enhanced tunneling realized systematically in thin insulating films, whereas magnitude of the polarization saturates to the bulk limit faster at larger wavevectors in thicker metallic films. We present a theoretical model which captures this delicate relationship between quantum tunneling and Fermi surface spin polarization. Our high-resolution spin-based spectroscopic results suggest that the polarization current can be tuned to zero in thin insulating films forming the basis for a future spin-switch nano-device.
We characterize the topological insulator Bi$_2$Se$_3$ using time- and angle- resolved photoemission spectroscopy. By employing two-photon photoemission, a complete picture of the unoccupied electronic structure from the Fermi level up to the vacuum level is obtained. We demonstrate that the unoccupied states host a second, Dirac surface state which can be resonantly excited by 1.5 eV photons. We then study the ultrafast relaxation processes following optical excitation. We find that they culminate in a persistent non-equilibrium population of the first Dirac surface state, which is maintained by a meta-stable population of the bulk conduction band. Finally, we perform a temperature-dependent study of the electron-phonon scattering processes in the conduction band, and find the unexpected result that their rates decrease with increasing sample temperature. We develop a model of phonon emission and absorption from a population of electrons, and show that this counter-intuitive trend is the natural consequence of fundamental electron-phonon scattering processes. This analysis serves as an important reminder that the decay rates extracted by time-resolved photoemission are not in general equal to single electron scattering rates, but include contributions from filling and emptying processes from a continuum of states.
We discuss the ultrafast evolution of the surface electronic structure of the topological insulator Bi$_2$Te$_3$ following a femtosecond laser excitation. Using time and angle resolved photoelectron spectroscopy, we provide a direct real-time visualisation of the transient carrier population of both the surface states and the bulk conduction band. We find that the thermalization of the surface states is initially determined by interband scattering from the bulk conduction band, lasting for about 0.5 ps; subsequently, few ps are necessary for the Dirac cone non-equilibrium electrons to recover a Fermi-Dirac distribution, while their relaxation extends over more than 10 ps. The surface sensitivity of our measurements makes it possible to estimate the range of the bulk-surface interband scattering channel, indicating that the process is effective over a distance of 5 nm or less. This establishes a correlation between the nanoscale thickness of the bulk charge reservoir and the evolution of the ultrafast carrier dynamics in the surface Dirac cone.
Quantitative understanding of the relationship between quantum tunneling and Fermi surface spin polarization is key to device design using topological insulator surface states. By using spin-resolved photoemission spectroscopy with p-polarized light in topological insulator Bi2Se3 thin films across the metal-to-insulator transition, we observe that for a given film thickness, the spin polarization is large for momenta far from the center of the surface Brillouin zone. In addition, the polarization decreases significantly with enhanced tunneling realized systematically in thin insulating films, whereas magnitude of the polarization saturates to the bulk limit faster at larger wavevectors in thicker metallic films. Our theoretical model calculations capture this delicate relationship between quantum tunneling and Fermi surface spin polarization. Our results suggest that the polarization current can be tuned to zero in thin insulating films forming the basis for a future spin-switch nano-device.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا