Do you want to publish a course? Click here

Toward a Comprehensive Model of Snow Crystal Growth: 10. On the Molecular Dynamics of Structure Dependent Attachment Kinetics

256   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

I examine the molecular dynamics of ice growth from water vapor, focusing on how the attachment kinetics can be augmented by edge-dependent surface diffusion. Although there are significant uncertainties in developing an accurate physical model of this process, it is possible to make some reasonable estimates of surface diffusion rates and admolecule density enhancements, derived from our basic understanding of ice-crystal growth processes. A quantitative model suggests that edge-dependent surface diffusion could substantially enhance terrace nucleation on narrow faceted surfaces, especially at the onset of surface premelting. This result supports our hypothesized mechanism for structure-dependent attachment kinetics, which readily explains the changes in snow crystal growth morphology with temperature depicted in the well-known Nakaya diagram. Many of the model features described here may be amenable to further quantitative investigation using existing computational models of the molecular structure and dynamics of the ice surface.



rate research

Read More

In this paper I examine snow crystal growth near -4 C in comparison with a comprehensive model that includes Structure-Dependent Attachment Kinetics (SDAK). Together with the previous paper in this series that investigated growth near 14 C, I show that a substantial body of experimental data now supports the existence of pronounced SDAK dips on basal surfaces near -4 C and on prism surfaces near -14 C. In both cases, the model suggests that edge-associated surface diffusion greatly reduces the nucleation barrier on narrow facet surfaces relative to that found on broad facets. The remarkable quantitative similarities in the growth behaviors near -4 C and -14 C suggest that these two SDAK features arise from essentially the same physical mechanism occurring at different temperatures on the two principal facets. When applied to atmospheric snow crystal formation, this comprehensive model can explain the recurrent morphological transitions between platelike and columnar growth seen in the Nakaya diagram.
In this paper I examine snow crystal growth near -14 C in comparison with a comprehensive model that includes Structure-Dependent Attachment Kinetics (SDAK). Analyzing a series of ice-growth observations in air, I show that the data strongly support the model, which stipulates that basal growth is described by classical terrace nucleation on faceted surfaces in this temperature region. In contrast, prism growth exhibits a pronounced SDAK dip that substantially reduces the nucleation barrier on narrow prism facets (relative to that found on broad prism facets). I use these measurements to further characterize and refine the SDAK model, which effectively explains the robust formation of platelike snow crystals in air near 14 C.
I examine a variety of snow crystal growth measurements taken at a temperature of -5 C, as a function of supersaturation, background gas pressure, and crystal morphology. Both plate-like and columnar prismatic forms are observed under different conditions at this temperature, along with a diverse collection of complex dendritic structures. The observations can all be reasonably understood using a single comprehensive physical model for the basal and prism attachment kinetics, together with particle diffusion of water vapor through the surrounding medium and other well-understood physical processes. A critical model feature is structure-dependent attachment kinetics (SDAK), for which the molecular attachment kinetics on a faceted surface depend strongly on the nearby mesoscopic structure of the crystal.
I examine a variety snow crystal growth experiments performed at temperatures near -2 C, as a function of supersaturation, background gas pressure, and crystal morphology. Although the different experimental data were obtained using quite diverse experimental techniques, the resulting measurements can all be reasonably understood using a single comprehensive physical model for the basal and prism attachment kinetics, together with particle diffusion of water vapor through the surrounding medium and other well-understood physical processes. As with the previous paper in this series, comparing and reconciling different data sets at a single temperature yields significant insights into the underlying physical processes that govern snow crystal growth dynamics.
We present a series of experiments investigating the growth of ice crystals from water vapor in the presence of a background gas. We measured growth dynamics at temperatures ranging from -2 C to -25 C, at supersaturations between 0.5 and 30 percent, and with background gases of nitrogen, argon, and air at a pressure of one bar. We compared our data with numerical models of diffusion-limited growth based on cellular automata to extract surface growth parameters at different temperatures and supersaturations. These data represent a first step toward obtaining precision ice growth measurements as a function of temperature, supersaturation, background gas pressure and gas constituents. From these investigations we hope to better understand the surface molecular dynamics that determine crystal growth rates and growth morphologies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا