In this article we exploit Ruelle-type spectral functions and analyze the Verma module over Virasoro algebra, boson-fermion correspondence, the analytic torsion, the Chern-Simons and $eta$ invariants, as well as the generation function associated to dimensions of the Hochschild homology of the crossed product $mathbb{C}[S_n]ltimes mathcal{A}^{otimes n}$ ($mathcal{A}$ is the $q$-Weyl algebra). After analysing the Chern-Simons and $eta$ invariants of Dirac operators by using irreducible $SU(n)$-flat connections on locally symmetric manifolds of non-positive section curvature, we describe the exponential action for the Chern-Simons theory.