Do you want to publish a course? Click here

Asteroseismology of luminous red giants with Kepler. II. Dependence of mass loss on pulsations and radiation

88   0   0.0 ( 0 )
 Added by Jie Yu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Mass loss by red giants is an important process to understand the final stages of stellar evolution and the chemical enrichment of the interstellar medium. Mass-loss rates are thought to be controlled by pulsation-enhanced dust-driven outflows. Here we investigate the relationships between mass loss, pulsations, and radiation, using 3213 luminous Kepler red giants and 135000 ASAS-SN semiregulars and Miras. Mass-loss rates are traced by infrared colours using 2MASS and WISE and by observed-to-model WISE fluxes, and are also estimated using dust mass-loss rates from literature assuming a typical gas-to-dust mass ratio of 400. To specify the pulsations, we extract the period and height of the highest peak in the power spectrum of oscillation. Absolute magnitudes are obtained from the 2MASS Ks band and the Gaia DR2 parallaxes. Our results follow. (i) Substantial mass loss sets in at pulsation periods above ~60 and ~100 days, corresponding to Asymptotic-Giant-Branch stars at the base of the period-luminosity sequences C and C. (ii) The mass-loss rate starts to rapidly increase in semiregulars for which the luminosity is just above the Red-Giant-Branch tip and gradually plateaus to a level similar to that of Miras. (iii) The mass-loss rates in Miras do not depend on luminosity, consistent with pulsation-enhanced dust-driven winds. (iv) The accumulated mass loss on the Red Giant Branch consistent with asteroseismic predictions reduces the masses of red-clump stars by 6.3%, less than the typical uncertainty on their asteroseismic masses. Thus mass loss is currently not a limitation of stellar age estimates for galactic archaeology studies.



rate research

Read More

The recently launched TESS mission is for the first time giving us the potential to perform inference asteroseismology across the whole sky. TESS observed the Kepler field entirely in its Sector 14 and partly in Sector 15. Here, we seek to detect oscillations in the red giants observed by TESS in the Kepler field of view. Using the full 4-yr Kepler results as the ground truth, we aim to characterise how well the seismic signal can be detected using TESS data. Because our data are based on one and two sectors of observation, our results will be representative of what one can expect for the vast majority of the TESS data. We detect clear oscillations in $sim$3000 stars with another $sim$1000 borderline (low S/N) cases, all of which yield a measurement of the frequency of maximum acoustic power, numax. In comparison, a simple calculation predicts $sim$4500 stars would show detectable oscillations. Of the clear detections we reliably measure the frequency separation between overtone radial modes, dnu, in 570 stars, meaning an overall dnu yield of 20%, which splits into a one-sector yield of 14% and a two-sector yield of 26%. These yields imply that typical (1-2 sector) TESS data will result in significant detection biases. Hence, to boost the number of stars, one might need to use only numax as the seismic input for stellar property estimation. On the up side, we find little or no bias in the seismic measurements and typical scatter relative to the Kepler `truth is about 5-6% in numax and 2-3% in dnu. These values, coupled with typical uncertainties in parallax, Teff, and Fe/H in a grid-based approach, would provide internal uncertainties of 3% in inferred stellar radius, 6% in mass and 20% in age. Finally, despite relatively large pixels of TESS, we find red giant seismology is not expected to be significantly affected by blending for stars with Tmag < 12.5.
We analysed solar-like oscillations in 1523 $textit{Kepler}$ red giants which have previously been misclassified as subgiants, with predicted $ u_{rm max}$ values (based on the Kepler Input Catalogue) between 280$mu$Hz to 700$mu$Hz. We report the discovery of 626 new oscillating red giants in our sample, in addition to 897 oscillators that were previously characterized by Hekker et al. (2011) from one quarter of $textit{Kepler}$ data. Our sample increases the known number of oscillating low-luminosity red giants by $26%$ (up to $sim$ 1900 stars). About three quarters of our sample are classified as ascending red-giant-branch stars, while the remainder are red-clump stars. A novel scheme was applied to determine $Delta u$ for 108 stars with $ u_{rm max}$ close to the Nyquist frequency (240$mu$Hz < $ u_{rm max}$ < 320$mu$Hz). Additionally, we identified 47 stars oscillating in the super-Nyquist frequency regime, up to 387$mu$Hz, using long-cadence light curves. We show that the misclassifications are most likely due to large uncertainties in KIC surface gravities, and do not result from the absence of broadband colors or from different physical properties such as reddening, spatial distribution, mass or metallicity. The sample will be valuable to study oscillations in low-luminosity red giants and to characterize planet candidates around those stars.
Clear power excess in a frequency range typical for solar-type oscillations in red giants has been detected in more than 1000 stars, which have been observed during the first 138 days of the science operation of the NASA Kepler satellite. This sample includes stars in a wide mass and radius range with spectral types G and K, extending in luminosity from the bottom of the giant branch up to high-luminous red giants. The high-precision asteroseismic observations with Kepler provide a perfect source for testing stellar structure and evolutionary models, as well as investigating the stellar population in our Galaxy. We fit a global model to the observed frequency spectra, which allows us to accurately estimate the granulation background signal and the global oscillation parameters, such as the frequency of maximum oscillation power. We find regular patterns of radial and non-radial oscillation modes and use a new technique to automatically identify the mode degree and the characteristic frequency separations between consecutive modes of the same spherical degree. In most cases, we can also measure the small separation. The seismic parameters are used to estimate stellar masses and radii and to place the stars in an H-R diagram by using an extensive grid of stellar models that covers a wide parameter range. Using Bayesian techniques throughout our analysis allows us to determine reliable uncertainties for all parameters. We provide accurate seismic parameters and their uncertainties for a large sample of red giants and determine their asteroseismic fundamental parameters. We investigate the influence of the stars metallicities on their positions in the H-R diagram. We study the red-giant populations in the red clump and bump and compare them to a synthetic population and find a mass and metallicity gradient in the red clump and clear evidence of a secondary-clump population.
Mass loss is an important activity for red supergiants (RSGs) which can influence their evolution and final fate. Previous estimations of mass loss rates (MLRs) of RSGs exhibit significant dispersion due to the difference in method and the incompleteness of sample. With the improved quality and depth of the surveys including the UKIRT/WFCAM observation in near infrared, LGGS and PS1 in optical, a rather complete sample of RSGs is identified in M31 and M33 according to their brightness and colors. For about 2000 objects in either galaxy from this ever largest sample, the MLR is derived by fitting the observational optical-to-mid infrared spectral energy distribution (SED) with the DUSTY code of a 1-D dust radiative transfer model. The average MLR of RSGs is found to be around $2.0times10^{-5}{text{M}_odot}/text{yr}$ with a gas-to-dust ratio of 100, which yields a total contribution to the interstellar dust by RSGs of about $1.1times10^{-3}{text{M}_odot}/text{yr}$ in M31 and $6.0 times10^{-4}{text{M}_odot}/text{yr}$ in M33, a non-negligible source in comparison with evolved low-mass stars. The MLRs are divided into three types by the dust properties, i.e. amorphous silicate, amorphous carbon and optically thin, and the relations of MLR with stellar parameters, infrared flux and colors are discussed and compared with previous works for the silicate and carbon dust group respectively.
111 - Andrea Miglio 2011
The detection of solar-like oscillations in G and K giants with the CoRoT and Kepler space-based satellites allows robust constraints to be set on the mass and radius of such stars. The availability of these constraints for thousands of giants sampling different regions of the Galaxy promises to enrich our understanding on the Milky Ways constituents. In this contribution we briefly recall which are the relevant constraints that red-giant seismology can currently provide to the study of stellar populations. We then present, for a few nearby stars, the comparison between radius and mass determined using seismic scaling relations and those obtained by other methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا