No Arabic abstract
The advent of Gaia, capable of measuring stellar wobbles caused by orbiting planets, raised an interest to the astrometric detection of exoplanets. Another source of such wobbles (often also called jitter) is stellar magnetic activity. A quantitative assessment of the stellar astrometric jitter is important for a more reliable astrometric detection and characterisation of exoplanets. We calculate the displacement of the solar photocentre due to the magnetic activity for an almost 16-year period (February 2, 1999 - August 1, 2014). We also investigate how the displacement depends on the spectral passband chosen for observations, including the wavelength range to be covered by the upcoming Small-JASMINE mission of JAXA. This is done by extending the SATIRE-S model for solar irradiance variability to calculating the displacement of the solar photocentre caused by the magnetic features on the surface of the Sun. We found that the peak to peak amplitude of the solar photocentre displacement would reach 0.5 mas if the Sun were located 10 pc away from the observer and observed in the Gaia G filter. This is by far too small to be detected by the Gaia mission. However, the Sun is a relatively inactive star so that one can expect significantly larger signals for younger, and, consequently, more active stars. The model developed in this study can be combined with the simulations of emergence and surface transport of magnetic flux which have recently became available to model the astrometric jitter over the broad range of magnetic activities.
Ultra-precise astrometry from the Gaia mission is expected to lead to astrometric detections of more than 20,000 exoplanets in our Galaxy. One of the factors that could hamper such detections is the astrometric jitter caused by the magnetic activity of the planet host stars. In our previous study, we modeled astrometric jitter for the Sun observed equator-on. In this work, we generalize our model and calculate the photocenter jitter as it would be measured by the Gaia and Small-JASMINE missions for stars with solar rotation rate and effective temperature, but with various values of the inclination angle of the stellar rotation axis. In addition, we consider the effect of metallicity and of nesting of active regions (i.e. the tendency of active regions to emerge in the vicinity of each other). We find that, while the jitter of stars observed equator-on does not have any long-term trends and can be easily filtered out, the photocenters of stars observed out of their equatorial planes experience systematic shifts over the course of the activity cycle. Such trends allow the jitter to be detected with continuous measurements, in which case it can interfere with planet detectability. An increase in the metallicity is found to increase the jitter caused by stellar activity. Active-region nesting can further enhance the peak-to-peak amplitude of the photocenter jitter to a level that could be detected by Gaia.
Context. Monitoring of the photometric and chromospheric HK emission data series of stars similar to the Sun in age and average activity level showed that there is an empirical correlation between the average stellar chromospheric activity level and the photometric variability. In general, more active stars show larger photometric variability. Interestingly, the measurements and reconstructions of the solar irradiance show that the Sun is significantly less variable than indicated by the empirical relationship. Aims. We aim to identify possible reasons for the Sun to be currently outside of this relationship. Methods. We employed different scenarios of solar HK emission and irradiance variability and compared them with available time series of Sun-like stars. Results. We show that the position of the Sun on the diagram of photometric variability versus chromospheric activity changes with time. The present solar position is different from its temporal mean position as the satellite era of continuous solar irradiance measurements has accidentally coincided with a period of unusually high and stable solar activity. Our analysis suggests that although present solar variability is significantly smaller than indicated by the stellar data, the temporal mean solar variability might be in agreement with the stellar data. We propose that the continuation of the photometric program and its expansion to a larger stellar sample will ultimately allow us to constrain the historical solar variability.
We present a summary of the splinter session Sun-like stars unlike the Sun that was held on 09 June 2016 as part of the Cool Stars 19 conference (Uppsala, Sweden). We discussed the main limitations (in the theory and observations) in the derivation of very precise stellar parameters and chemical abundances of Sun-like stars. We outlined and discussed the most important and most debated processes that can produce chemical peculiarities in solar-type stars. Finally, in an open discussion between all the participants we tried to identify new pathways and prospects towards future solutions of the currently open questions.
The X-ray and extreme-ultraviolet (EUV) emissions from the low-mass stars significantly affect the evolution of the planetary atmosphere. However, it is, observationally difficult to constrain the stellar high-energy emission because of the strong interstellar extinction of EUV photons. In this study, we simulate the XUV (X-ray+EUV) emission from the Sun-like stars by extending the solar coronal heating model that self-consistently solves, with sufficiently high resolution, the surface-to-coronal energy transport, turbulent coronal heating, and coronal thermal response by conduction and radiation. The simulations are performed with a range of loop lengths and magnetic filling factors at the stellar surface. With the solar parameters, the model reproduces the observed solar XUV spectrum below the Lyman edge, thus validating its capability of predicting the XUV spectra of other Sun-like stars. The model also reproduces the observed nearly-linear relation between the unsigned magnetic flux and the X-ray luminosity. From the simulation runs with various loop lengths and filling factors, we also find a scaling relation, namely $log L_{rm EUV} = 9.93 + 0.67 log L_{rm X}$, where $L_{rm EUV}$ and $L_{rm X}$ are the luminosity in the EUV and X-ray range, respectively, in cgs. By assuming a power-law relation between the Rossby number and the magnetic filling factor, we reproduce the renowned relation between the Rossby number and the X-ray luminosity. We also propose an analytical description of the energy injected into the corona, which, in combination with the conventional Rosner-Tucker-Vaiana scaling law, semi-analytically explains the simulation results. This study refines the concepts of solar and stellar coronal heating and derives a theoretical relation for estimating the hidden stellar EUV luminosity from X-ray observations.
We determine the response of a uniformly rotating star to tidal perturbations due to a companion. General periodic orbits and parabolic flybys are considered. We evaluate energy and angular momentum exchange rates as a sum of contributions from normal modes allowing for dissipative processes. We consider the case when the response is dominated by the contribution of an identifiable regular spectrum of low frequency modes, such as gravity modes and evaluate it in the limit of very weak dissipation. Our formalism may be applied both to Sun-like stars with radiative cores and convective envelopes and to more massive stars with convective cores and radiative envelopes. We provide general expressions for transfer of energy and angular momentum valid for an orbit with any eccentricity. Detailed calculations are made for Sun-like stars in the slow rotation regime where centrifugal distortion is neglected in the equilibrium and the traditional approximation is made for the normal modes. We use both a WKBJ procedure and direct numerical evaluation which are found to be in good agreement for regimes of interest. Finally we use our formalism to determine the evolution time scales for an object, in an orbit of small eccentricity, around a Sun-like star in which the tidal response is assumed to occur. Systems with either no rotation or synchronous rotation are considered. Only rotationally modified gravity modes are taken into account under the assumption that wave dissipation occurs close to the stellar centre.