No Arabic abstract
Given a closed four-manifold $X$ with an indefinite intersection form, we consider smoothly embedded surfaces in $X setminus $int$(B^4)$, with boundary a knot $K subset S^3$. We give several methods to bound the genus of such surfaces in a fixed homology class. Our techniques include adjunction inequalities and the $10/8 + 4$ theorem. In particular, we present obstructions to a knot being H-slice (that is, bounding a null-homologous disk) in a four-manifold and show that the set of H-slice knots can detect exotic smooth structures on closed $4$-manifolds.
Given a 3-manifold M containing an incompressible surface Q, we obtain an inequality relating the Heegaard genus of M and the Heegaard genera of the components of M - Q. Here the sum of the genera of the components of M - Q is bounded above by a linear expression in terms of the genus of M, the Euler characteristic of Q and the number of parallelism classes of essential annuli for which representatives can be simultaneously imbedded in the components of M - Q.
This paper is devoted to the classification of the infinite families of Teichmuller curves generated by Prym eigenforms of genus 3 having a single zero. These curves were discovered by McMullen. The main invariants of our classification is the discriminant D of the corresponding quadratic order, and the generators of this order. It turns out that for D sufficiently large, there are two Teichmueller curves when D=1 modulo 8, only one Teichmueller curve when D=0,4 modulo 8, and no Teichmueller curves when D=5 modulo 8. For small values of D, where this classification is not necessarily true, the number of Teichmueller curves can be determined directly. The ingredients of our proof are first, a description of these curves in terms of prototypes and models, and then a careful analysis of the combinatorial connectedness in the spirit of McMullen. As a consequence, we obtain a description of cusps of Teichmueller curves given by Prym eigenforms. We would like also to emphasis that even though we have the same statement compared to, when D=1 modulo 8, the reason for this disconnectedness is different. The classification of these Teichmueller curves plays a key role in our investigation of the dynamics of SL(2,R) on the intersection of the Prym eigenform locus with the stratum H(2,2), which is the object of a forthcoming paper.
We prove that the expected value of the ratio between the smooth four-genus and the Seifert genus of two-bridge knots tends to zero as the crossing number tends to infinity.
We refine prior bounds on how the multivariable signature and the nullity of a link change under link cobordisms. The formula generalizes a series of results about the 4-genus having their origins in the Murasugi-Tristram inequality, and at the same time extends previously known results about concordance invariance of the signature to a bigger set of allowed variables. Finally, we show that the multivariable signature and nullity are also invariant under $0.5$-solvable cobordism.
Let $W$ be a compact smooth $4$-manifold that deformation retract to a PL embedded closed surface. One can arrange the embedding to have at most one non-locally-flat point, and near the point the topology of the embedding is encoded in the singularity knot $K$. If $K$ is slice, then $W$ has a smooth spine, i.e., deformation retracts onto a smoothly embedded surface. Using the obstructions from the Heegaard Floer homology and the high-dimensional surgery theory, we show that $W$ has no smooth spines if $K$ is a knot with nonzero Arf invariant, a nontrivial L-space knot, the connected sum of nontrivial L-space knots, or an alternating knot of signature $<-4$. We also discuss examples where the interior of $W$ is negatively curved.