Do you want to publish a course? Click here

The GALAH+ Survey: A New Library of Observed Stellar Spectra Improves Radial Velocities and Hints at Motions within M67

102   0   0.0 ( 0 )
 Added by Tomaz Zwitter
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

GALAH+ is a magnitude-limited survey of high resolution stellar spectra obtained by the HERMES spectrograph at the Australian Astronomical Observatory. Its third data release provides reduced spectra with new derivations of stellar parameters and abundances of 30 chemical elements for 584,015 dwarfs and giants, 88% of them in the Gaia magnitude range 11 < G < 14. Here we use these improved values of stellar parameters to build a library of observed spectra which is useful to study variations of individual spectral lines with stellar parameters. This and other improvements are used to derive radial velocities with uncertainties which are generally within 0.1 km/s or ~25% smaller than in the previous release. Median differences in radial velocities measured here and by the Gaia DR2 or APOGEE DR16 surveys are smaller than 30 m/s, a larger offset is present only for Gaia measurements of giant stars. We identify 4483 stars with intrinsically variable velocities and 225 stars for which the velocity stays constant over >=3 visits spanning more than a year. The combination of radial velocities from GALAH+ with distances and sky plane motions from Gaia enables studies of dynamics within streams and clusters. For example, we estimate that the open cluster M67 has a total mass of ~3300 Msun and its outer parts seem to be expanding, though astrometry with a larger time-span than currently available from Gaia eDR3 is needed to judge if the latter result is real.



rate research

Read More

GALAH is a large-scale magnitude-limited southern stellar spectroscopic survey. Its second data release (GALAH DR2) provides values of stellar parameters and abundances of 23 elements for 342,682 stars (Buder et al.). Here we add a description of the public release of radial velocities with a typical accuracy of 0.1 km/s for 336,215 of these stars, achievable due to the large wavelength coverage, high resolving power and good signal to noise ratio of the observed spectra, but also because convective motions in stellar atmosphere and gravitational redshift from the star to the observer are taken into account. In the process we derive medians of observed spectra which are nearly noiseless, as they are obtained from between 100 and 1116 observed spectra belonging to the same bin with a width of 50 K in temperature, 0.2 dex in gravity, and 0.1 dex in metallicity. Publicly released 1181 median spectra have a resolving power of 28,000 and trace the well-populated stellar types with metallicities between -0.6 and +0.3. Note that radial velocities from GALAH are an excellent match to the accuracy of velocity components along the sky plane derived by Gaia for the same stars. The level of accuracy achieved here is adequate for studies of dynamics within stellar clusters, associations and streams in the Galaxy. So it may be relevant for studies of the distribution of dark matter.
The Radial Velocity Experiment (RAVE) is a magnitude-limited (9<I<12) spectroscopic survey of Galactic stars randomly selected in the southern hemisphere. The RAVE medium-resolution spectra (R~7500) cover the Ca-triplet region (8410-8795A). The 6th and final data release (DR6 or FDR) is based on 518387 observations of 451783 unique stars. RAVE observations were taken between 12 April 2003 and 4 April 2013. Here we present the genesis, setup and data reduction of RAVE as well as wavelength-calibrated and flux-normalized spectra and error spectra for all observations in RAVE DR6. Furthermore, we present derived spectral classification and radial velocities for the RAVE targets, complemented by cross matches with Gaia DR2 and other relevant catalogs. A comparison between internal error estimates, variances derived from stars with more than one observing epoch and a comparison with radial velocities of Gaia DR2 reveals consistently that 68% of the objects have a velocity accuracy better than 1.4 km/s, while 95% of the objects have radial velocities better than 4.0 km/s. Stellar atmospheric parameters, abundances and distances are presented in subsequent publication. The data can be accessed via the RAVE Web (http://rave-survey.org) or the Vizier database.
522 - Bo Zhang , Jiao Li , Fan Yang 2021
Radial velocity (RV) is among the most fundamental physical quantities obtainable from stellar spectra and is rather important in the analysis of time-domain phenomena. The LAMOST Medium-Resolution Survey (MRS) DR7 contains 5 million single-exposure stellar spectra at spectral resolution $Rsim7,500$. However, the temporal variation of the RV zero-points (RVZPs) of the MRS survey, which makes the RVs from multiple epochs inconsistent, has not been addressed. In this paper, we measure the RVs of the 3.8 million single-exposure spectra (for 0.6 million stars) with signal-to-noise ratio (SNR) higher than 5 based on cross-correlation function (CCF) method, and propose a robust method to self-consistently determine the RVZPs exposure-by-exposure for each spectrograph with the help of textit{Gaia} DR2 RVs. Such RVZPs are estimated for 3.6 million RVs and can reach a mean precision of $sim 0.38,mathrm{km,s}^{-1}$. The result of the temporal variation of RVZPs indicates that our algorithm is efficient and necessary before we use the absolute RVs to perform time-domain analysis. Validating the results with APOGEE DR16 shows that our absolute RVs can reach an overall precision of 0.84/0.80 $mathrm{km,s}^{-1}$ in the blue/red arm at $50<mathrm{SNR}<100$, while 1.26/1.99 $mathrm{km,s}^{-1}$ at $5<mathrm{SNR}<10$. The cumulative distribution function (CDF) of the standard deviations of multiple RVs ($N_mathrm{obs}geq 8$) for 678 standard stars reach 0.45/0.54, 1.07/1.39, and 1.45/1.86 $mathrm{km,s}^{-1}$ in the blue/red arm at 50%, 90%, and 95% levels, respectively. The catalogs of the RVs, RVZPs, and selected candidate RV standard stars are available at url{https://github.com/hypergravity/paperdata}.
We present and analyse 120 spectroscopic binary and triple cluster members of the old (4 Gyr) open cluster M67 (NGC 2682). As a cornerstone of stellar astrophysics, M67 is a key cluster in the WIYN Open Cluster Study (WOCS); radial-velocity (RV) observations of M67 are ongoing and extend back over 45 years, incorporating data from seven different telescopes, and allowing us to detect binaries with orbital periods <~10^4 days. Our sample contains 1296 stars (604 cluster members) with magnitudes of 10 <= V <= 16.5 (about 1.3 to 0.7 Msolar), from the giants down to ~4 mag below the main-sequence turnoff, and extends in radius to 30 arcminutes (7.4 pc at a distance of 850 pc, or ~7 core radii). This paper focuses primarily on the main-sequence binaries, but orbital solutions are also presented for red giants, yellow giants and sub-subgiants. Out to our period detection limit and within our magnitude and spatial domain, we find a global main-sequence incompleteness-corrected binary fraction of 34% +/- 3%, which rises to 70% +/- 17% in the cluster center. We derive a tidal circularization period of P_circ = 11.0 +1.1 -1.0 days. We also analyze the incompleteness-corrected distributions of binary orbital elements and masses. The period distribution rises toward longer periods. The eccentricity distribution, beyond P_circ, is consistent with a uniform distribution. The mass-ratio distribution is also consistent with a uniform distribution. Overall, these M67 binaries are closely consistent with similar binaries in the galactic field, as well as the old (7 Gyr) open cluster NGC 188. WIYN Open Cluster Study. 83.
The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) started median-resolution spectroscopic (MRS, R$sim$7500) survey since October 2018. The main scientific goals of MRS, including binary stars, pulsators, and other variable stars are launched with a time-domain spectroscopic survey. However, the systematic errors, including the bias induced from wavelength calibration and the systematic difference between different spectrographs have to be carefully considered during radial velocity measurement. In this work, we provide a technique to correct the systematics in the wavelength calibration based on the relative radial velocity measurements from LAMOST MRS spectra. We show that, for the stars with multi-epoch spectra, the systematic bias which is induced from the exposures of different nights can be well corrected for LAMOST MRS in each spectrograph. And the precision of radial velocity zero-point of multi-epoch time-domain observations reaches below 0.5 km/s . As a by-product, we also give the constant star candidates, which can be the secondary radial-velocity standard star candidates of LAMOST MRS time-domain surveys.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا