Do you want to publish a course? Click here

Enhance Convolutional Neural Networks with Noise Incentive Block

108   0   0.0 ( 0 )
 Added by Menghan Xia
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

As a generic modeling tool, Convolutional Neural Networks (CNNs) have been widely employed in image generation and translation tasks. However, when fed with a flat input, current CNN models may fail to generate vivid results due to the spatially shared convolution kernels. We call it the flatness degradation of CNNs. Unfortunately, such degradation is the greatest obstacles to generate a spatially-variant output from a flat input, which has been barely discussed in the previous literature. To tackle this problem, we propose a model agnostic solution, i.e. Noise Incentive Block (NIB), which serves as a generic plug-in for any CNN generation model. The key idea is to break the flat input condition while keeping the intactness of the original information. Specifically, the NIB perturbs the input data symmetrically with a noise map and reassembles them in the feature domain as driven by the objective function. Extensive experiments show that existing CNN models equipped with NIB survive from the flatness degradation and are able to generate visually better results with richer details in some specific image generation tasks given flat inputs, e.g. semantic image synthesis, data-hidden image generation, and deep neural dithering.



rate research

Read More

Convolutional neural networks trained without supervision come close to matching performance with supervised pre-training, but sometimes at the cost of an even higher number of parameters. Extracting subnetworks from these large unsupervised convnets with preserved performance is of particular interest to make them less computationally intensive. Typical pruning methods operate during training on a task while trying to maintain the performance of the pruned network on the same task. However, in self-supervised feature learning, the training objective is agnostic on the representation transferability to downstream tasks. Thus, preserving performance for this objective does not ensure that the pruned subnetwork remains effective for solving downstream tasks. In this work, we investigate the use of standard pruning methods, developed primarily for supervised learning, for networks trained without labels (i.e. on self-supervised tasks). We show that pruned masks obtained with or without labels reach comparable performance when re-trained on labels, suggesting that pruning operates similarly for self-supervised and supervised learning. Interestingly, we also find that pruning preserves the transfer performance of self-supervised subnetwork representations.
We propose contextual convolution (CoConv) for visual recognition. CoConv is a direct replacement of the standard convolution, which is the core component of convolutional neural networks. CoConv is implicitly equipped with the capability of incorporating contextual information while maintaining a similar number of parameters and computational cost compared to the standard convolution. CoConv is inspired by neuroscience studies indicating that (i) neurons, even from the primary visual cortex (V1 area), are involved in detection of contextual cues and that (ii) the activity of a visual neuron can be influenced by the stimuli placed entirely outside of its theoretical receptive field. On the one hand, we integrate CoConv in the widely-used residual networks and show improved recognition performance over baselines on the core tasks and benchmarks for visual recognition, namely image classification on the ImageNet data set and object detection on the MS COCO data set. On the other hand, we introduce CoConv in the generator of a state-of-the-art Generative Adversarial Network, showing improved generative results on CIFAR-10 and CelebA. Our code is available at https://github.com/iduta/coconv.
Convolutional Neural Networks (CNNs) have been proven to be extremely successful at solving computer vision tasks. State-of-the-art methods favor such deep network architectures for its accuracy performance, with the cost of having massive number of parameters and high weights redundancy. Previous works have studied how to prune such CNNs weights. In this paper, we go to another extreme and analyze the performance of a network stacked with a single convolution kernel across layers, as well as other weights sharing techniques. We name it Deep Anchored Convolutional Neural Network (DACNN). Sharing the same kernel weights across layers allows to reduce the model size tremendously, more precisely, the network is compressed in memory by a factor of L, where L is the desired depth of the network, disregarding the fully connected layer for prediction. The number of parameters in DACNN barely increases as the network grows deeper, which allows us to build deep DACNNs without any concern about memory costs. We also introduce a partial shared weights network (DACNN-mix) as well as an easy-plug-in module, coined regulators, to boost the performance of our architecture. We validated our idea on 3 datasets: CIFAR-10, CIFAR-100 and SVHN. Our results show that we can save massive amounts of memory with our model, while maintaining a high accuracy performance.
123 - Till S. Hartmann 2018
Classical convolutional neural networks (cCNNs) are very good at categorizing objects in images. But, unlike human vision which is relatively robust to noise in images, the performance of cCNNs declines quickly as image quality worsens. Here we propose to use recurrent connections within the convolutional layers to make networks robust against pixel noise such as could arise from imaging at low light levels, and thereby significantly increase their performance when tested with simulated noisy video sequences. We show that cCNNs classify images with high signal to noise ratios (SNRs) well, but are easily outperformed when tested with low SNR images (high noise levels) by convolutional neural networks that have recurrency added to convolutional layers, henceforth referred to as gruCNNs. Addition of Bayes-optimal temporal integration to allow the cCNN to integrate multiple image frames still does not match gruCNN performance. Additionally, we show that at low SNRs, the probabilities predicted by the gruCNN (after calibration) have higher confidence than those predicted by the cCNN. We propose to consider recurrent connections in the early stages of neural networks as a solution to computer vision under imperfect lighting conditions and noisy environments; challenges faced during real-time video streams of autonomous driving at night, during rain or snow, and other non-ideal situations.
88 - Zhe Xu , Ray C. C. Cheung 2019
Although convolutional neural networks (CNNs) are now widely used in various computer vision applications, its huge resource demanding on parameter storage and computation makes the deployment on mobile and embedded devices difficult. Recently, binary convolutional neural networks are explored to help alleviate this issue by quantizing both weights and activations with only 1 single bit. However, there may exist a noticeable accuracy degradation when compared with full-precision models. In this paper, we propose an improved training approach towards compact binary CNNs with higher accuracy. Trainable scaling factors for both weights and activations are introduced to increase the value range. These scaling factors will be trained jointly with other parameters via backpropagation. Besides, a specific training algorithm is developed including tight approximation for derivative of discontinuous binarization function and $L_2$ regularization acting on weight scaling factors. With these improvements, the binary CNN achieves 92.3% accuracy on CIFAR-10 with VGG-Small network. On ImageNet, our method also obtains 46.1% top-1 accuracy with AlexNet and 54.2% with Resnet-18 surpassing previous works.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا