Do you want to publish a course? Click here

A Generalized Information-Theoretic Approach for Bounding the Number of Independent Sets in Bipartite Graphs

65   0   0.0 ( 0 )
 Added by Igal Sason
 Publication date 2020
and research's language is English
 Authors Igal Sason




Ask ChatGPT about the research

This paper studies the problem of upper bounding the number of independent sets in a graph, expressed in terms of its degree distribution. For bipartite regular graphs, Kahn (2001) established a tight upper bound using an information-theoretic approach, and he also conjectured an upper bound for general graphs. His conjectured bound was recently proved by Sah et al. (2019), using different techniques not involving information theory. The main contribution of this work is the extension of Kahns information-theoretic proof technique to handle irregular bipartite graphs. In particular, when the bipartite graph is regular on one side, but it may be irregular in the other, the extended entropy-based proof technique yields the same bound that was conjectured by Kahn (2001) and proved by Sah et al. (2019).



rate research

Read More

We determine the maximum number of maximal independent sets of arbitrary graphs in terms of their covering numbers and we completely characterize the extremal graphs. As an application, we give a similar result for Konig-Egervary graphs in terms of their matching numbers.
Safely deploying machine learning models to the real world is often a challenging process. Models trained with data obtained from a specific geographic location tend to fail when queried with data obtained elsewhere, agents trained in a simulation can struggle to adapt when deployed in the real world or novel environments, and neural networks that are fit to a subset of the population might carry some selection bias into their decision process. In this work, we describe the problem of data shift from a novel information-theoretic perspective by (i) identifying and describing the different sources of error, (ii) comparing some of the most promising objectives explored in the recent domain generalization, and fair classification literature. From our theoretical analysis and empirical evaluation, we conclude that the model selection procedure needs to be guided by careful considerations regarding the observed data, the factors used for correction, and the structure of the data-generating process.
We introduce various measures of forward classical communication for bipartite quantum channels. Since a point-to-point channel is a special case of a bipartite channel, the measures reduce to measures of classical communication for point-to-point channels. As it turns out, these reduced measures have been reported in prior work of Wang et al. on bounding the classical capacity of a quantum channel. As applications, we show that the measures are upper bounds on the forward classical capacity of a bipartite channel. The reduced measures are upper bounds on the classical capacity of a point-to-point quantum channel assisted by a classical feedback channel. Some of the various measures can be computed by semi-definite programming.
141 - Adam Blumenthal 2019
In this paper, we study independent domination in directed graphs, which was recently introduced by Cary, Cary, and Prabhu. We provide a short, algorithmic proof that all directed acyclic graphs contain an independent dominating set. Using linear algebraic tools, we prove that any strongly connected graph with even period has at least two independent dominating sets, generalizing several of the results of Cary, Cary, and Prabhu. We prove that determining the period of the graph is not sufficient to determine the existence of an independent dominating set by constructing a few examples of infinite families of graphs. We show that the direct analogue of Vizings Conjecture does not hold for independent domination number in directed graphs by providing two infinite families of graphs. We initialize the study of time complexity for independent domination in directed graphs, proving that the existence of an independent dominating set in directed acyclic graphs and strongly connected graphs with even period are in the time complexity class $P$. We also provide an algorithm for determining existence of an independent dominating set for digraphs with period greater than $1$.
The notion of a Riordan graph was introduced recently, and it is a far-reaching generalization of the well-known Pascal graphs and Toeplitz graphs. However, apart from a certain subclass of Toeplitz graphs, nothing was known on independent sets in Riordan graphs. In this paper, we give exact enumeration and lower and upper bounds for the number of independent sets for various classes of Riordan graphs. Remarkably, we offer a variety of methods to solve the problems that range from the structural decomposition theorem to methods in combinatorics on words. Some of our results are valid for any graph.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا