No Arabic abstract
While it is well known that high levels of prenatal alcohol exposure (PAE) result in significant cognitive deficits in children, the exact nature of the dose response is less well understood. In particular, there is a pressing need to identify the levels of PAE associated with an increased risk of clinically significant adverse effects. To address this issue, data have been combined from six longitudinal birth cohort studies in the United States that assessed the effects of PAE on cognitive outcomes measured from early school age through adolescence. Structural equation models (SEMs) are commonly used to capture the association among multiple observed outcomes in order to characterise the underlying variable of interest (in this case, cognition) and then relate it to PAE. However, it was not possible to apply classic SEM software in our context because different outcomes were measured in the six studies. In this paper we show how a Bayesian approach can be used to fit a multi-group multi-level structural model that maps cognition to a broad range of observed variables measured at multiple ages. These variables map to several different cognitive subdomains and are examined in relation to PAE after adjusting for confounding using propensity scores. The model also tests the possibility of a change point in the dose-response function.
There is increasing appetite for analysing multiple network data. This is different to analysing traditional data sets, where now each observation in the data comprises a network. Recent technological advancements have allowed the collection of this type of data in a range of different applications. This has inspired researchers to develop statistical models that most accurately describe the probabilistic mechanism that generates a network population and use this to make inferences about the underlying structure of the network data. Only a few studies developed to date consider the heterogeneity that can exist in a network population. We propose a Mixture of Measurement Error Models for identifying clusters of networks in a network population, with respect to similarities detected in the connectivity patterns among the networks nodes. Extensive simulation studies show our model performs well in both clustering multiple network data and inferring the model parameters. We further apply our model on two real world multiple network data sets resulting from the fields of Computing (Human Tracking Systems) and Neuroscience.
Recent technology breakthrough in spatial molecular profiling has enabled the comprehensive molecular characterizations of single cells while preserving spatial information. It provides new opportunities to delineate how cells from different origins form tissues with distinctive structures and functions. One immediate question in analysis of spatial molecular profiling data is how to identify spatially variable genes. Most of the current methods build upon the geostatistical model with a Gaussian process that relies on selecting ad hoc kernels to account for spatial expression patterns. To overcome this potential challenge and capture more types of spatial patterns, we introduce a Bayesian approach to identify spatially variable genes via Ising model. The key idea is to use the energy interaction parameter of the Ising model to characterize spatial expression patterns. We use auxiliary variable Markov chain Monte Carlo algorithms to sample from the posterior distribution with an intractable normalizing constant in the Ising model. Simulation results show that our energy-based modeling approach led to higher accuracy in detecting spatially variable genes than those kernel-based methods. Applying our method to two real spatial transcriptomics datasets, we discovered novel spatial patterns that shed light on the biological mechanisms. The proposed method presents a new perspective for analyzing spatial transcriptomics data.
Factor analysis is a flexible technique for assessment of multivariate dependence and codependence. Besides being an exploratory tool used to reduce the dimensionality of multivariate data, it allows estimation of common factors that often have an interesting theoretical interpretation in real problems. However, standard factor analysis is only applicable when the variables are scaled, which is often inappropriate, for example, in data obtained from questionnaires in the field of psychology,where the variables are often categorical. In this framework, we propose a factor model for the analysis of multivariate ordered and non-ordered polychotomous data. The inference procedure is done under the Bayesian approach via Markov chain Monte Carlo methods. Two Monte-Carlo simulation studies are presented to investigate the performance of this approach in terms of estimation bias, precision and assessment of the number of factors. We also illustrate the proposed method to analyze participants responses to the Motivational State Questionnaire dataset, developed to study emotions in laboratory and field settings.
Generalized autoregressive moving average (GARMA) models are a class of models that was developed for extending the univariate Gaussian ARMA time series model to a flexible observation-driven model for non-Gaussian time series data. This work presents Bayesian approach for GARMA models with Poisson, binomial and negative binomial distributions. A simulation study was carried out to investigate the performance of Bayesian estimation and Bayesian model selection criteria. Also three real datasets were analysed using the Bayesian approach on GARMA models.
Many analyses of neuroimaging data involve studying one or more regions of interest (ROIs) in a brain image. In order to do so, each ROI must first be identified. Since every brain is unique, the location, size, and shape of each ROI varies across subjects. Thus, each ROI in a brain image must either be manually identified or (semi-) automatically delineated, a task referred to as segmentation. Automatic segmentation often involves mapping a previously manually segmented image to a new brain image and propagating the labels to obtain an estimate of where each ROI is located in the new image. A more recent approach to this problem is to propagate labels from multiple manually segmented atlases and combine the results using a process known as label fusion. To date, most label fusion algorithms either employ voting procedures or impose prior structure and subsequently find the maximum a posteriori estimator (i.e., the posterior mode) through optimization. We propose using a fully Bayesian spatial regression model for label fusion that facilitates direct incorporation of covariate information while making accessible the entire posterior distribution. We discuss the implementation of our model via Markov chain Monte Carlo and illustrate the procedure through both simulation and application to segmentation of the hippocampus, an anatomical structure known to be associated with Alzheimers disease.