No Arabic abstract
Full-reference (FR) point cloud quality assessment (PCQA) has achieved impressive progress in recent years. However, in many cases, obtaining the reference point cloud is difficult, so the no-reference (NR) methods have become a research hotspot. Few researches about NR objective quality metrics are conducted due to the lack of a large-scale subjective point cloud dataset. Besides, the distinctive property of the point cloud format makes it infeasible to apply blind image quality assessment (IQA) methods directly to predict the quality scores of point clouds. In this paper, we establish a large-scale PCQA dataset, which includes 104 reference point clouds and more than 24,000 distorted point clouds. In the established dataset, each reference point cloud is augmented with 33 types of impairments (e.g., Gaussian noise, contrast distortion, geometry noise, local loss, and compression loss) at 7 different distortion levels. Besides, inspired by the hierarchical perception system and considering the intrinsic attributes of point clouds, an end-to-end sparse convolutional neural network (CNN) is designed to accurately estimate the subjective quality. We conduct several experiments to evaluate the performance of the proposed network. The results demonstrate that the proposed network has reliable performance. The dataset presented in this work will be publicly accessible at http://smt.sjtu.edu.cn.
In this paper, we propose a deep learning based video quality assessment (VQA) framework to evaluate the quality of the compressed users generated content (UGC) videos. The proposed VQA framework consists of three modules, the feature extraction module, the quality regression module, and the quality pooling module. For the feature extraction module, we fuse the features from intermediate layers of the convolutional neural network (CNN) network into final quality-aware feature representation, which enables the model to make full use of visual information from low-level to high-level. Specifically, the structure and texture similarities of feature maps extracted from all intermediate layers are calculated as the feature representation for the full reference (FR) VQA model, and the global mean and standard deviation of the final feature maps fused by intermediate feature maps are calculated as the feature representation for the no reference (NR) VQA model. For the quality regression module, we use the fully connected (FC) layer to regress the quality-aware features into frame-level scores. Finally, a subjectively-inspired temporal pooling strategy is adopted to pool frame-level scores into the video-level score. The proposed model achieves the best performance among the state-of-the-art FR and NR VQA models on the Compressed UGC VQA database and also achieves pretty good performance on the in-the-wild UGC VQA databases.
To improve the viewers Quality of Experience (QoE) and optimize computer graphics applications, 3D model quality assessment (3D-QA) has become an important task in the multimedia area. Point cloud and mesh are the two most widely used digital representation formats of 3D models, the visual quality of which is quite sensitive to lossy operations like simplification and compression. Therefore, many related studies such as point cloud quality assessment (PCQA) and mesh quality assessment (MQA) have been carried out to measure the caused visual quality degradations. However, a large part of previous studies utilizes full-reference (FR) metrics, which means they may fail to predict the quality level with the absence of the reference 3D model. Furthermore, few 3D-QA metrics are carried out to consider color information, which significantly restricts the effectiveness and scope of application. In this paper, we propose a no-reference (NR) quality assessment metric for colored 3D models represented by both point cloud and mesh. First, we project the 3D models from 3D space into quality-related geometry and color feature domains. Then, the natural scene statistics (NSS) and entropy are utilized to extract quality-aware features. Finally, the Support Vector Regressor (SVR) is employed to regress the quality-aware features into quality scores. Our method is mainly validated on the colored point cloud quality assessment database (SJTU-PCQA) and the colored mesh quality assessment database (CMDM). The experimental results show that the proposed method outperforms all the state-of-art NR 3D-QA metrics and obtains an acceptable gap with the state-of-art FR 3D-QA metrics.
In this paper, we propose a no-reference (NR) image quality assessment (IQA) method via feature level pseudo-reference (PR) hallucination. The proposed quality assessment framework is grounded on the prior models of natural image statistical behaviors and rooted in the view that the perceptually meaningful features could be well exploited to characterize the visual quality. Herein, the PR features from the distorted images are learned by a mutual learning scheme with the pristine reference as the supervision, and the discriminative characteristics of PR features are further ensured with the triplet constraints. Given a distorted image for quality inference, the feature level disentanglement is performed with an invertible neural layer for final quality prediction, leading to the PR and the corresponding distortion features for comparison. The effectiveness of our proposed method is demonstrated on four popular IQA databases, and superior performance on cross-database evaluation also reveals the high generalization capability of our method. The implementation of our method is publicly available on https://github.com/Baoliang93/FPR.
We propose a new prototype model for no-reference video quality assessment (VQA) based on the natural statistics of space-time chips of videos. Space-time chips (ST-chips) are a new, quality-aware feature space which we define as space-time localized cuts of video data in directions that are determined by the local motion flow. We use parametrized distribution fits to the bandpass histograms of space-time chips to characterize quality, and show that the parameters from these models are affected by distortion and can hence be used to objectively predict the quality of videos. Our prototype method, which we call ChipQA-0, is agnostic to the types of distortion affecting the video, and is based on identifying and quantifying deviations from the expected statistics of natural, undistorted ST-chips in order to predict video quality. We train and test our resulting model on several large VQA databases and show that our model achieves high correlation against human judgments of video quality and is competitive with state-of-the-art models.
The goal of No-Reference Image Quality Assessment (NR-IQA) is to estimate the perceptual image quality in accordance with subjective evaluations, it is a complex and unsolved problem due to the absence of the pristine reference image. In this paper, we propose a novel model to address the NR-IQA task by leveraging a hybrid approach that benefits from Convolutional Neural Networks (CNNs) and self-attention mechanism in Transformers to extract both local and non-local features from the input image. We capture local structure information of the image via CNNs, then to circumvent the locality bias among the extracted CNNs features and obtain a non-local representation of the image, we utilize Transformers on the extracted features where we model them as a sequential input to the Transformer model. Furthermore, to improve the monotonicity correlation between the subjective and objective scores, we utilize the relative distance information among the images within each batch and enforce the relative ranking among them. Last but not least, we observe that the performance of NR-IQA models degrades when we apply equivariant transformations (e.g. horizontal flipping) to the inputs. Therefore, we propose a method that leverages self-consistency as a source of self-supervision to improve the robustness of NRIQA models. Specifically, we enforce self-consistency between the outputs of our quality assessment model for each image and its transformation (horizontally flipped) to utilize the rich self-supervisory information and reduce the uncertainty of the model. To demonstrate the effectiveness of our work, we evaluate it on seven standard IQA datasets (both synthetic and authentic) and show that our model achieves state-of-the-art results on various datasets.