Do you want to publish a course? Click here

Influencers and the Giant Component: the Fundamental Hardness in Privacy Protection for Socially Contagious Attributes

261   0   0.0 ( 0 )
 Added by Aria Rezaei
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The presence of correlation is known to make privacy protection more difficult. We investigate the privacy of socially contagious attributes on a network of individuals, where each individual possessing that attribute may influence a number of others into adopting it. We show that for contagions following the Independent Cascade model there exists a giant connected component of infected nodes, containing a constant fraction of all the nodes who all receive the contagion from the same set of sources. We further show that it is extremely hard to hide the existence of this giant connected component if we want to obtain an estimate of the activated users at an acceptable level. Moreover, an adversary possessing this knowledge can predict the real status (active or inactive) with decent probability for many of the individuals regardless of the privacy (perturbation) mechanism used. As a case study, we show that the Wasserstein mechanism, a state-of-the-art privacy mechanism designed specifically for correlated data, introduces a noise with magnitude of order $Omega(n)$ in the count estimation in our setting. We provide theoretical guarantees for two classes of random networks: Erdos Renyi graphs and Chung-Lu power-law graphs under the Independent Cascade model. Experiments demonstrate that a giant connected component of infected nodes can and does appear in real-world networks and that a simple inference attack can reveal the status of a good fraction of nodes.



rate research

Read More

80 - Aria Rezaei , Jie Gao 2019
A commonly used method to protect user privacy in data collection is to perform randomized perturbation on users real data before collection so that aggregated statistics can still be inferred without endangering secrets held by individuals. In this paper, we take a closer look at the validity of Differential Privacy guarantees, when the sensitive attributes are subject to social influence and contagions. We first show that in the absence of any knowledge about the contagion network, an adversary that tries to predict the real values from perturbed ones, cannot achieve an area under the ROC curve (AUC) above $1-(1-delta)/(1+e^varepsilon)$, if the dataset is perturbed using an $(varepsilon,delta)$-differentially private mechanism. Then, we show that with the knowledge of the contagion network and model, one can do significantly better. We demonstrate that our method passes the performance limit imposed by differential privacy. Our experiments also reveal that nodes with high influence on others are at more risk of revealing their secrets than others. The performance is shown through extensive experiments on synthetic and real-world networks.
Recommendation is one of the critical applications that helps users find information relevant to their interests. However, a malicious attacker can infer users private information via recommendations. Prior work obfuscates user-item data before sharing it with recommendation system. This approach does not explicitly address the quality of recommendation while performing data obfuscation. Moreover, it cannot protect users against private-attribute inference attacks based on recommendations. This work is the first attempt to build a Recommendation with Attribute Protection (RAP) model which simultaneously recommends relevant items and counters private-attribute inference attacks. The key idea of our approach is to formulate this problem as an adversarial learning problem with two main components: the private attribute inference attacker, and the Bayesian personalized recommender. The attacker seeks to infer users private-attribute information according to their items list and recommendations. The recommender aims to extract users interests while employing the attacker to regularize the recommendation process. Experiments show that the proposed model both preserves the quality of recommendation service and protects users against private-attribute inference attacks.
One of the most significant challenges facing systems of collective intelligence is how to encourage participation on the scale required to produce high quality data. This paper details ongoing work with Phrase Detectives, an online game-with-a-purpose deployed on Facebook, and investigates user motivations for participation in social network gaming where the wisdom of crowds produces useful data.
237 - Weihua Li , Yuxuan Hu , Shiqing Wu 2021
A key step in influence maximization in online social networks is the identification of a small number of users, known as influencers, who are able to spread influence quickly and widely to other users. The evolving nature of the topological structure of these networks makes it difficult to locate and identify these influencers. In this paper, we propose an adaptive agent-based evolutionary approach to address this problem in the context of both static and dynamic networks. This approach is shown to be able to adapt the solution as the network evolves. It is also applicable to large-scale networks due to its distributed framework. Evaluation of our approach is performed by using both synthetic networks and real-world datasets. Experimental results demonstrate that the proposed approach outperforms state-of-the-art seeding algorithms in terms of maximizing influence.
Any modern network inference paradigm must incorporate multiple aspects of network structure, including information that is often encoded both in vertices and in edges. Methodology for handling vertex attributes has been developed for a number of network models, but comparable techniques for edge-related attributes remain largely unavailable. We address this gap in the literature by extending the latent position random graph model to the line graph of a random graph, which is formed by creating a vertex for each edge in the original random graph, and connecting each pair of edges incident to a common vertex in the original graph. We prove concentration inequalities for the spectrum of a line graph, and then establish that although naive spectral decompositions can fail to extract necessary signal for edge clustering, there exist signal-preserving singular subspaces of the line graph that can be recovered through a carefully-chosen projection. Moreover, we can consistently estimate edge latent positions in a random line graph, even though such graphs are of a random size, typically have high rank, and possess no spectral gap. Our results also demonstrate that the line graph of a stochastic block model exhibits underlying block structure, and we synthesize and test our methods in simulations for cluster recovery and edge covariate inference in stochastic block model graphs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا