No Arabic abstract
Massive early-type galaxies are believed to be the end result of an extended mass accretion history. The stars formed in situ very early on in the initial phase of the assembly might have originated from an extremely intense star formation burst, and may still be found within the cores of such galaxies today. We investigate the presence of a surviving high-$z$ compact progenitor component in the brightest galaxy of the Hydra I cluster, NGC 3311, by mapping its 2D kinematics and stellar population out to 2 effective radii, combining MUSE observations, extended EMILES models, and a newly developed parametric fully Bayesian framework using full-spectrum fitting. We present 2D maps and radial profiles of the stellar velocity dispersion, age, total metallicity, $alpha$-element, sodium abundance ([Na/Fe]), and the initial mass function (IMF) slope. All properties have significant gradients, confirming the existence of multiple structural components, including a young, metal-rich blue spot. We find that the component dominating the light budget of NGC 3311 within $Rlesssim 2.0$ kpc is the surviving $z=0$ analog of a high-$z$ compact core. This concentrated structure has a relatively small velocity dispersion ($sigma_*approx 180$ km s$^{-1}$), is very old (ages$gtrsim 11$ Gyr), metal-rich ([Z/H]$sim0.2$ and [Na/Fe]$sim0.4$), and has a bottom-heavy IMF (with slope $Gamma_bsim2.4$). In the outer region, stars become increasingly hotter, younger, metal and sodium poorer, $alpha$-element richer, and the IMF slope becomes Chabrier-like. The multiple structural components in NGC 3311 confirm the predictions from the two-phase formation scenario for NGC 3311. Interestingly, the outer stellar population has an overabundant [$alpha$/Fe], most likely because NGC 3311, located at the center of the galaxy cluster, accreted stars from rapidly quenched satellites.[Abridged]
We discovered a strongly lensed (mu >40) Lya emission at z=6.629 (S/N~18) in the MUSE Deep Lensed Field (MDLF) targeting the Hubble Frontier Field galaxy cluster MACS~J0416. Dedicated lensing simulations imply that the Lya emitting region necessarily crosses the caustic. The arc-like shape of the Lya extends 3 arcsec on the observed plane and is the result of two merged multiple images, each one with a de-lensed Lya luminosity L<~2.8 x 10^(40) erg/s arising from a confined region (< 150 pc effective radius). A spatially unresolved HST counterpart is barely detected at S/N~2 after stacking the near-infrared bands, corresponding to an observed(intrinsic) magnitude m_(1500)>~30.8(>~35.0). The inferred rest-frame Lya equivalent width is EWo > 1120 A if the IGM transmission is T(IGM)<0.5. The low luminosities and the extremely large Lya EWo match the case of a Population~III star complex made of several dozens stars (~ 10^4 Msun) which irradiate a HII region crossing the caustic. While the Lya and stellar continuum are among the faintest ever observed at this redshift, the continuum and the Lya emissions could be affected by differential magnification, possibly biasing the EWo estimate. The aforementioned tentative HST detection tend to favor a large EWo, making such a faint Pop~III candidate a key target for the James Webb Space Telescope and Extremely Large Telescopes.
By determining the nature of all the Planck compact sources within 808.4 deg^2 of large Herschel surveys, we have identified 27 candidate proto-clusters of dusty star forming galaxies (DSFGs) that are at least 3{sigma} overdense in either 250, 350 or 500 $mu$mm sources. We find roughly half of all the Planck compact sources are resolved by Herschel into multiple discrete objects, with the other half remaining unresolved by Herschel. We find a significant difference betwe
We present a detailed study of the kinematic, chemical and excitation properties of the giant Ly$alpha$ emitting nebula and the giant ion{H}{I} absorber associated with the $z = 2.92$ radio galaxy MRC 0943--242, using spectroscopic observations from VLT/MUSE, VLT/X-SHOOTER and other instruments. Together, these data provide a wide range of rest-frame wavelength (765 AA$,$ -- 6378 AA$,$ at $z = 2.92$) and 2D spatial information. We find clear evidence for jet gas interactions affecting the kinematic properties of the nebula, with evidence for both outflows and inflows being induced by radio-mode feedback. We suggest that the regions of relatively lower ionization level, spatially correlated with the radio hotspots, may be due to localised compression of photoionized gas by the expanding radio source, thereby lowering the ionization parameter, or due to a contribution from shock-heating. We find that photoionization of super-solar metallicity gas ($Z/Z_{odot}$ = 2.1) by an AGN-like continuum ($alpha$=--1.0) at a moderate ionization parameter ($U$ = 0.018) gives the best overall fit to the complete X-SHOOTER emission line spectrum. We identify a strong degeneracy between column density and Doppler parameter such that it is possible to obtain a reasonable fit to the ion{H}{I} absorption feature across the range log N(ion{H}{I}/cm$^{-2}$) = 15.20 and 19.63, with the two best-fitting occurring near the extreme ends of this range. The extended ion{H}{I} absorber is blueshifted relative to the emission line gas, but shows a systematic decrease in blueshift towards larger radii, consistent with a large scale expanding shell.
(Abriged) Blue compact galaxies (BCGs) are low-luminosity, metal-poor, gas-rich objects that form stars at high rates, excellent analogs to the high-redshift star-forming galaxy population. Being low-mass starbursts, they also constitute ideal laboratories for investigating star formation and massive stellar feedback. This work presents results from integral field spectroscopic observations of the BCG Haro 14 taken with the Multi Unit Spectroscopic Explorer (MUSE). The large MUSE field of view enables simultaneous observations of the starburst and the host galaxy. We built galaxy maps in continuum and in emission lines and generated synthetic VRI images, from which we produced color index maps and surface brightness profiles. We detected numerous clumps spread throughout the galaxy, both in continuum and in emission lines, and produced a catalog with their position, size, and photometry. This analysis allowed us to study the morphology and stellar populations of Haro 14 in detail. The stellar distribution shows a pronounced asymmetry; the intensity peak in continuum is not centered with respect to the stellar host but is displaced by about 500 pc southwest. At the position of the continuum peak we find a bright stellar cluster that with M$_{V}=-12.18$ appears as a strong super stellar cluster candidate. We also find a highly asymmetric, blue, but nonionizing stellar component that occupies almost the whole eastern part of the galaxy. We conclude that there are at least three different stellar populations in Haro 14: the current starburst of about 6 Myr; an intermediate-age component of between ten and several hundred million years; and a red and regular host of several gigayears. The pronounced lopsidedness in the continuum and also in the color maps, and the presence of numerous stellar clusters, are consistent with a scenario of mergers or interactions acting in Haro 14.
We report the source size distribution, as measured by ALMA millimetric continuum imaging, of a sample of 13 AzTEC-selected submillimeter galaxies (SMGs) at z_photo ~ 3-6. Their infrared luminosities and star-formation rates (SFR) are L_IR ~ 2-6 x 10^12 L_sun and ~ 200-600 M_sun yr-1, respectively. The size of z ~ 3-6 SMGs ranges from 0.10 to 0.38 with a median of 0.20+0.03-0.05 (FWHM), corresponding to a median circularized effective radius (Rc,e) of 0.67+0.13-0.14 kpc, comparable to the typical size of the stellar component measured in compact quiescent galaxies at z ~ 2 (cQGs) --- R ~ 1 kpc. The median surface SFR density of our z ~ 3-6 SMGs is 100+42-26 M_sun yr-1 kpc-2, comparable to that seen in local merger-driven (U)LIRGsrather than in extended disk galaxies at low and high redshifts. The discovery of compact starbursts in z >~ 3 SMGs strongly supports a massive galaxy formation scenario wherein z ~ 3-6 SMGs evolve into the compact stellar components of z ~ 2 cQGs. These cQGs are then thought to evolve into the most massive ellipticals in the local Universe, mostly via dry mergers. Our results thus suggest that z >~ 3 SMGs are the likely progenitors of massive local ellipticals, via cQGs, meaning that we can now trace the evolutionary path of the most massive galaxies over a period encompassing ~ 90% of the age of the Universe.