Do you want to publish a course? Click here

Instanton Expansions and Phase Transitions

58   0   0.0 ( 0 )
 Added by John Stout
 Publication date 2020
  fields
and research's language is English
 Authors John Stout




Ask ChatGPT about the research

A central object in any axionic theory is its periodic potential, which is typically generated by instantons. The goal of this paper is to understand what physically happens to the theory when we lose control of the potentials instanton expansion. We argue, using the Yang-Lee theory of phase transitions, that the theory breaks down in the classic sense: states become light. However, these states are not necessarily light for all values of the axion and there can be large regions where the effective description remains valid. We find alternative expressions for the effective potential in terms of the properties of these light states, which remain useful even when the instanton expansion breaks down, and thus initiate a push beyond the lamppost of large instanton actions. Most of these questions are motivated by the axionic Weak Gravity Conjecture, which we reformulate without reference to instanton actions. We also comment on its ability to constrain large-field axion inflation.



rate research

Read More

We propose a set of novel expansions of Nekrasovs instanton partition functions. Focusing on 5d supersymmetric pure Yang-Mills theory with unitary gauge group on $mathbb{C}^2_{q,t^{-1}} times mathbb{S}^1$, we show that the instanton partition function admits expansions in terms of partition functions of unitary gauge theories living on the 3d subspaces $mathbb{C}_{q} times mathbb{S}^1$, $mathbb{C}_{t^{-1}} times mathbb{S}^1$ and their intersection along $mathbb{S}^1$. These new expansions are natural from the BPS/CFT viewpoint, as they can be matched with $W_{q,t}$ correlators involving an arbitrary number of screening charges of two kinds. Our constructions generalize and interpolate existing results in the literature.
106 - Sang Pyo Kim , Don N. Page 2019
The phase-integral and worldline-instanton methods are two widely used methods to calculate Schwinger pair-production densities in electric fields of fixed direction that depend on just one time or space coordinate in the same fixed plane of the electromagnetic field tensor. We show that for charged spinless bosons the leading results of the phase-integral method integrated up through quadratic momenta are equivalent to those of the worldline-instanton method including prefactors. We further apply the phase-integral method to fermion production and time-dependent electric fields parallel to a constant magnetic field.
We clarify certain aspects of instanton operators in five-dimensional supersymmetric gauge theories. In particular, we show how, in the pointlike limit, they become supersymmetric and provide the natural bridge with the instantonic states contributing to the index as well as with the zero mode counting leading to broken current multiplets.
We clarify the relationship between probe analysis of the supergravity dual and the large-N solution of the localization matrix model for the planar N = 2* super-Yang-Mills theory. A formalism inspired by supergravity allows us to systematically solve the matrix model at strong coupling. Quite surprisingly, we find that quantum phase transitions, known to occur in the N = 2* theory, start to be visible at the third order of the strong-coupling expansion and thus constitute a perturbative phenomenon on the string worldsheet.
109 - Andrea Addazi 2020
We show that our Universe lives in a topological and non-perturbative vacuum state full of a large amount of hidden quantum hairs, the hairons. We will discuss and elaborate on theoretical evidences that the quantum hairs are related to the gravitational topological winding number in vacuo. Thus, hairons are originated from topological degrees of freedom, holographically stored in the de Sitter area. The hierarchy of the Planck scale over the Cosmological Constant (CC) is understood as an effect of a Topological Memory intrinsically stored in the space-time geometry. Any UV quantum destabilizations of the CC are re-interpreted as Topological Phase Transitions, related to the desapparence of a large ensamble of topological hairs. This process is entropically suppressed, as a tunneling probability from the N- to the 0-states. Therefore, the tiny CC in our Universe is a manifestation of the rich topological structure of the space-time. In this portrait, a tiny neutrino mass can be generated by quantum gravity anomalies and accommodated into a large N-vacuum state. We will re-interpret the CC stabilization from the point of view of Topological Quantum Computing. An exponential degeneracy of topological hairs non-locally protects the space-time memory from quantum fluctuations as in Topological Quantum Computers.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا