No Arabic abstract
Memristors have been at the forefront of nanoelectronics research for the last decade, offering a valuable component to reconfigurable computing. Their attributes have been studied extensively along with applications that leverage their state-dependent programmability in a static fashion. However, practical applications of memristor-based AC circuits have been rather sparse, with only a few examples found in the literature where their use is emulated at higher frequencies. In this work, we study the behavior of metal-oxide memristors under an AC perturbation in a range of frequencies, from 10^3 to 10^7 Hz. Metal-oxide memristors are found to behave as RC low-pass filters and they present a variable cut-off frequency when their state is switched, thus providing a window of reconfigurability when used as filters. We further study this behaviour across distinct material systems and we show that the usable reconfigurability window of the devices can be tailored to encompass specific frequency ranges by amending the devices capacitance. This study extends current knowledge on metal-oxide memristors by characterising their frequency dependent characteristics, providing useful insights for their use in reconfigurable AC circuits.
In this work, we evaluate a multitude of metal-oxide bi-layers and demonstrate the benefits from increased memory stability via multibit memory operation. We introduce a programming methodology that allows for operating metal-oxide memristive devices as multibit memory elements with highly packed yet clearly discernible memory states. We finally demonstrate a 5.5-bit memory cell (47 resistive states) with excellent retention and power consumption performance. This paves the way for neuromorphic and non-volatile memory applications.
Increasing energy demands of modern society requires deep understanding of the properties of energy storage materials as well as their performance tuning. We show that the capacitance of graphene oxide (GO) can be precisely tuned using a simple electrochemical reduction route. In situ resistance measurements, combined with cyclic voltammetry measurement and Raman spectroscopy, have shown that upon the reduction GO is irreversibly deoxygenated which is further accompanied with structural ordering and increasing of electrical conductivity. The capacitance is maximized when the concentration of oxygen functional groups is properly balanced with the conductivity. Any further reduction and de-oxygenation leads to the gradual loss of the capacitance. The observed trend is independent on the preparation route and on the exact chemical and structural properties of GO. It is proposed that an improvement of capacitive properties of any GO can be achieved by optimization of its reduction conditions.
Metal halide perovskites (MHPs) have become a promising candidate in a myriad of applications, such as light-emitting diodes, solar cells, lasing, photodetectors, photocatalysis, transistors, etc. This is related to the synergy of their excellent features, including high photoluminescence quantum yields, narrow and tunable emission, long charge carrier lifetimes, broad absorption spectrum along with high extinction absorptions coefficients, among others. However, the main bottleneck is the poor stability of the MHPs under ambient conditions. This is imposing severe restrictions with respect to their industrialized applications and commercialization. In this context, metal oxide (MOx) coatings have recently emerged as an efficient strategy towards overcoming the stabilities issues as well as retain the excellent properties of the MHPs, and therefore facilitate the development of the related devices stabilities and performances.This review provides a summary of the recent progress on synthetic methods, enhanced features, the techniques to assess the MHPs-MOxcomposites, and applications of the
[email protected], novel approaches to fabricate the composites and new applications of the composites are also reported in this review for the first time. This is rounded by a critical outlook about the current MHPs stability issues and the further direction to ensure a bright future of MHPs@MOx
A quantum memristor is a resistive passive circuit element with memory engineered in a given quantum platform. It can be represented by a quantum system coupled to a dissipative environment, in which a system-bath coupling is mediated through a weak measurement scheme and classical feedback on the system. In quantum photonics, such a device can be designed from a beam splitter with tunable reflectivity, which is modified depending on the results of measurements in one of the outgoing beams. Here, we show that a similar implementation can be achieved with frequency-entangled optical fields and a frequency mixer that, working similarly to a beam splitter, produces state superpositions. We show that the characteristic hysteretic behavior of memristors can be reproduced when analyzing the response of the system with respect to the control, for different experimentally-attainable states. Since memory effects in memristors can be exploited for classical and neuromorphic computation, the results presented in this work provides the first steps of a novel route towards constructing quantum neural networks in quantum photonics.
Reversible bipolar nano-switches that can be set and read electronically in a solid-state two-terminal device are very promising for applications. We have performed molecular-dynamics simulations that mimic systems with oxygen vacancies interacting via realistic potentials and driven by an external bias voltage. The competing short- and long-range interactions among charged mobile vacancies lead to density fluctuations and short-range ordering, while illustrating some aspects of observed experimental behavior, such as memristor polarity inversion.