We study the application of a recently introduced hierarchical description of traffic flow control by driver-assist vehicles to include lane changing dynamics. Lane-dependent feedback control strategies are implemented at the level of vehicles and the aggregate trends are studied by means of Boltzmann-type equations determining three different hydrodynamics based on the lane switching frequency. System of first order macroscopic equations describing the evolution of densities along the lanes are then consistently determined through a suitable closured strategy. Numerical examples are then presented to illustrate the features of the proposed hierarchical approach.
We study vehicular traffic on a road with multiple lanes and dense, unidirectional traffic following the traditional Lighthill-Whitham-Richards model where the velocity in each lane depends only on the density in the same lane. The model assumes that the tendency of drivers to change to a neighboring lane is proportional to the difference in velocity between the lanes. The model allows for an arbitrary number of lanes, each with its distinct velocity function. The resulting model is a well-posed weakly coupled system of hyperbolic conservation laws with a Lipschitz continuous source. We show several relevant bounds for solutions of this model that are not valid for general weakly coupled systems. Furthermore, by taking an appropriately scaled limit as the number of lanes increases, we derive a model describing a continuum of lanes, and show that the $N$-lane model converges to a weak solution of the continuum model.
We introduce a mathematical description of the impact of sociality in the spread of infectious diseases by integrating an epidemiological dynamics with a kinetic modeling of population-based contacts. The kinetic description leads to study the evolution over time of Boltzmann-type equations describing the number densities of social contacts of susceptible, infected and recovered individuals, whose proportions are driven by a classical SIR-type compartmental model in epidemiology. Explicit calculations show that the spread of the disease is closely related to moments of the contact distribution. Furthermore, the kinetic model allows to clarify how a selective control can be assumed to achieve a minimal lockdown strategy by only reducing individuals undergoing a very large number of daily contacts. We conduct numerical simulations which confirm the ability of the model to describe different phenomena characteristic of the rapid spread of an epidemic. Motivated by the COVID-19 pandemic, a last part is dedicated to fit numerical solutions of the proposed model with infection data coming from different European countries.
In this work we investigate the ability of a kinetic approach for traffic dynamics to predict speed distributions obtained through rough data. The present approach adopts the formalism of uncertainty quantification, since reaction strengths are uncertain and linked to different types of driver behaviour or different classes of vehicles present in the flow. Therefore, the calibration of the expected speed distribution has to face the reconstruction of the distribution of the uncertainty. We adopt experimental microscopic measurements recorded on a German motorway, whose speed distribution shows a multimodal trend. The calibration is performed by extrapolating the uncertainty parameters of the kinetic distribution via a constrained optimisation approach. The results confirm the validity of the theoretical set-up.
In this work, we introduce an effective model for both ideal and viscous fluid dynamics within the framework of kinetic field theory (KFT). The main application we have in mind is cosmic structure formation where gaseous components need to be gravitationally coupled to dark matter. However, we expect that the fluid model is much more widely applicable. The idea behind the effective model is similar to that of smoothed particle hydrodynamics. By introducing mesoscopic particles equipped with a position, a momentum, and an enthalpy, we construct a free theory for such particles and derive suitable interaction operators. We then show that the model indeed leads to the correct macroscopic evolution equations, namely the continuity, Euler, Navier-Stokes, and energy conservation equations of both ideal and viscous hydrodynamics.
We consider the simple exclusion process on Z x {0, 1}, that is, an horizontal ladder composed of 2 lanes. Particles can jump according to a lane-dependent translation-invariant nearest neighbour jump kernel, i.e. horizontally along each lane, and vertically along the scales of the ladder. We prove that generically, the set of extremal invariant measures consists of (i) translation-invariant product Bernoulli measures; and, modulo translations along Z: (ii) at most two shock measures (i.e. asymptotic to Bernoulli measures at $pm$$infty$) with asymptotic densities 0 and 2; (iii) at most three shock measures with a density jump of magnitude 1. We fully determine this set for certain parameter values. In fact, outside degenerate cases, there is at most one shock measure of type (iii). The result can be partially generalized to vertically cyclic ladders with arbitrarily many lanes. For the latter, we answer an open question of [5] about rotational invariance of stationary measures.