We construct a top-down holographic model of Weyl semimetal states using $(3+1)$-dimensional $mathcal{N}=4$ supersymmetric $SU(N_c)$ Yang-Mills theory, at large $N_c$ and strong coupling, coupled to a number $N_f ll N_c$ of $mathcal{N}=2$ hypermultiplets with mass $m$. A $U(1)$ subgroup of the R-symmetry acts on the hypermultiplet fermions as an axial symmetry. In the presence of a constant external axial gauge field in a spatial direction, $b$, we find the defining characteristic of a Weyl semi-metal: a quantum phase transition as $m/b$ increases, from a topological state with non-zero anomalous Hall conductivity to a trivial insulator. The transition is first order. Remarkably, the anomalous Hall conductivity is independent of the hypermultiplet mass, taking the value dictated by the axial anomaly. At non-zero temperature the transition remains first order, and the anomalous Hall conductivity acquires non-trivial dependence on the hypermultiplet mass and temperature.