No Arabic abstract
We propose the task of narrative incoherence detection as a new arena for inter-sentential semantic understanding: Given a multi-sentence narrative, decide whether there exist any semantic discrepancies in the narrative flow. Specifically, we focus on the missing sentence and discordant sentence detection. Despite its simple setup, this task is challenging as the model needs to understand and analyze a multi-sentence narrative, and predict incoherence at the sentence level. As an initial step towards this task, we implement several baselines either directly analyzing the raw text (textit{token-level}) or analyzing learned sentence representations (textit{sentence-level}). We observe that while token-level modeling has better performance when the input contains fewer sentences, sentence-level modeling performs better on longer narratives and possesses an advantage in efficiency and flexibility. Pre-training on large-scale data and auxiliary sentence prediction training objective further boost the detection performance of the sentence-level model.
Many implicit inferences exist in text depending on how it is structured that can critically impact the texts interpretation and meaning. One such structural aspect present in text with chronology is the order of its presentation. For narratives or stories, this is known as the narrative order. Reordering a narrative can impact the temporal, causal, event-based, and other inferences readers draw from it, which in turn can have strong effects both on its interpretation and interestingness. In this paper, we propose and investigate the task of Narrative Reordering (NAREOR) which involves rewriting a given story in a different narrative order while preserving its plot. We present a dataset, NAREORC, with human rewritings of stories within ROCStories in non-linear orders, and conduct a detailed analysis of it. Further, we propose novel task-specific training methods with suitable evaluation metrics. We perform experiments on NAREORC using state-of-the-art models such as BART and T5 and conduct extensive automatic and human evaluations. We demonstrate that although our models can perform decently, NAREOR is a challenging task with potential for further exploration. We also investigate two applications of NAREOR: generation of more interesting variations of stories and serving as adversarial sets for temporal/event-related tasks, besides discussing other prospective ones, such as for pedagogical setups related to language skills like essay writing and applications to medicine involving clinical narratives.
Image description task has been invariably examined in a static manner with qualitative presumptions held to be universally applicable, regardless of the scope or target of the description. In practice, however, different viewers may pay attention to different aspects of the image, and yield different descriptions or interpretations under various contexts. Such diversity in perspectives is difficult to derive with conventional image description techniques. In this paper, we propose a customized image narrative generation task, in which the users are interactively engaged in the generation process by providing answers to the questions. We further attempt to learn the users interest via repeating such interactive stages, and to automatically reflect the interest in descriptions for new images. Experimental results demonstrate that our model can generate a variety of descriptions from single image that cover a wider range of topics than conventional models, while being customizable to the target user of interaction.
We introduce the task of changing the narrative point of view, where characters are assigned a narrative perspective that is different from the one originally used by the writer. The resulting shift in the narrative point of view alters the reading experience and can be used as a tool in fiction writing or to generate types of text ranging from educational to self-help and self-diagnosis. We introduce a benchmark dataset containing a wide range of types of narratives annotated with changes in point of view from deictic (first or second person) to anaphoric (third person) and describe a pipeline for processing raw text that relies on a neural architecture for mention selection. Evaluations on the new benchmark dataset show that the proposed architecture substantially outperforms the baselines by generating mentions that are less ambiguous and more natural.
Recent advancements in open-domain question answering (ODQA), i.e., finding answers from large open-domain corpus like Wikipedia, have led to human-level performance on many datasets. However, progress in QA over book stories (Book QA) lags behind despite its similar task formulation to ODQA. This work provides a comprehensive and quantitative analysis about the difficulty of Book QA: (1) We benchmark the research on the NarrativeQA dataset with extensive experiments with cutting-edge ODQA techniques. This quantifies the challenges Book QA poses, as well as advances the published state-of-the-art with a $sim$7% absolute improvement on Rouge-L. (2) We further analyze the detailed challenges in Book QA through human studies.footnote{url{https://github.com/gorov/BookQA}.} Our findings indicate that the event-centric questions dominate this task, which exemplifies the inability of existing QA models to handle event-oriented scenarios.
It is appealing to have a system that generates a story or scripts automatically from a story-line, even though this is still out of our reach. In dialogue systems, it would also be useful to drive dialogues by a dialogue plan. In this paper, we address a key problem involved in these applications -- guiding a dialogue by a narrative. The proposed model ScriptWriter selects the best response among the candidates that fit the context as well as the given narrative. It keeps track of what in the narrative has been said and what is to be said. A narrative plays a different role than the context (i.e., previous utterances), which is generally used in current dialogue systems. Due to the unavailability of data for this new application, we construct a new large-scale data collection GraphMovie from a movie website where end-users can upload their narratives freely when watching a movie. Experimental results on the dataset show that our proposed approach based on narratives significantly outperforms the baselines that simply use the narrative as a kind of context.