Do you want to publish a course? Click here

RC-chain: Reputation-based Crowdsourcing Blockchain for Vehicular Networks

79   0   0.0 ( 0 )
 Added by Lijun Sun
 Publication date 2020
and research's language is English
 Authors L. J. Sun




Ask ChatGPT about the research

As the commercial use of 5G technologies has grown more prevalent, smart vehicles have become an efficient platform for delivering a wide array of services directly to customers. The vehicular crowdsourcing service (VCS), for example, can provide immediate and timely feedback to the user regarding real-time transportation information. However, different sources can generate spurious information towards a specific service request in the pursuit of profit. Distinguishing trusted information from numerous sources is the key to a reliable VCS platform. This paper proposes a solution to this problem called RC-chain, a reputation-based crowdsourcing framework built on a blockchain platform (Hyperledger Fabric). We first establish the blockchain-based platform to support the management of crowdsourcing trading and user-reputation evaluating activities. A reputation model, the Trust Propagation & Feedback Similarity (TPFS), then calculates the reputation values of participants and reveals any malicious behavior accordingly. Finally, queueing theory is used to evaluate the blockchain-based platform and optimize the system performance. The proposed framework was deployed on the IBM Hyperledger Fabric platform to observe its real-world running time, effectiveness, and overall performance.



rate research

Read More

Message exchange among vehicles plays an important role in ensuring road safety. Emergency message dissemination is usually carried out by broadcasting. However, high vehicle density and mobility usually lead to challenges in message dissemination such as broadcasting storm and low probability of packet reception. This paper proposes a federated learning based blockchain-assisted message dissemination solution. Similar to the incentive-based Proof-of-Work consensus in blockchain, vehicles compete to become a relay node (miner) by processing the proposed Proof-of-Federated-Learning (PoFL) consensus which is embedded in the smart contract of blockchain. Both theoretical and practical analysis of the proposed solution are provided. Specifically, the proposed blockchain based federated learning results in more number of vehicles uploading their models in a given time, which can potentially lead to a more accurate model in less time as compared to the same solution without using blockchain. It also outperforms the other blockchain approaches for message dissemination by reducing 65.2% of time delay in consensus, improving at least 8.2% message delivery rate and preserving privacy of neighbor vehicle more efficiently. The economic model to incentivize vehicles participating in federated learning and message dissemination is further analyzed using Stackelberg game model.
The real-time traffic monitoring is a fundamental mission in a smart city to understand traffic conditions and avoid dangerous incidents. In this paper, we propose a reliable and efficient traffic monitoring system that integrates blockchain and the Internet of vehicles technologies effectively. It can crowdsource its tasks of traffic information collection to vehicles that run on the road instead of installing cameras in every corner. First, we design a lightweight blockchain-based information trading framework to model the interactions between traffic administration and vehicles. It guarantees reliability, efficiency, and security during executing trading. Second, we define the utility functions for the entities in this system and come up with a budgeted auction mechanism that motivates vehicles to undertake the collection tasks actively. In our algorithm, it not only ensures that the total payment to the selected vehicles does not exceed a given budget, but also maintains the truthfulness of auction process that avoids some vehicles to offer unreal bids for getting greater utilities. Finally, we conduct a group of numerical simulations to evaluate the reliability of our trading framework and performance of our algorithms, whose results demonstrate their correctness and efficiency perfectly.
With the increasing development of advanced communication technologies, vehicles are becoming smarter and more connected. Due to the tremendous growth of various vehicular applications, a huge amount of data is generated through advanced on-board devices and is deemed critical to improve driving safety and enhance vehicular services. However, cloud based models often fall short in applications where latency and mobility are critical. In order to fully realize the potential of vehicular networks, the challenges of efficient communication and computation need to be addressed. In this direction, vehicular fog computing (VFC) has emerged which extends the concept of fog computing to conventional vehicular networks. It is a geographically distributed paradigm that has the potential to conduct time-critical and data-intensive tasks by pushing intelligence (i.e. computing resources, storage, and application services) in the vicinity of end vehicles. However secure and reliable transmission are of significant importance in highly-mobile vehicular networks in order to ensure the optimal Quality of Service (QoS). In this direction, several authentication mechanisms have been proposed in the literature but most of them are found unfit due to absence of decentralization, anonymity, and trust characteristics. Thus, an effective cross-datacenter authentication and key-exchange scheme based on blockchain and elliptic curve cryptography (ECC) is proposed in this paper. Here, the distributed ledger of blockchain is used for maintaining the network information while the highly secure ECC is employed for mutual authentication between vehicles and road side units (RSUs). Additionally, the proposed scheme is lightweight and scalable for the considered VFC setup. The performance evaluation results against the existing state-of-the-art reveal that the proposed scheme accomplishes enhanced security features.
186 - Zhaojun Lu , Qian Wang , Gang Qu 2018
The public key infrastructure (PKI) based authentication protocol provides the basic security services for vehicular ad-hoc networks (VANETs). However, trust and privacy are still open issues due to the unique characteristics of vehicles. It is crucial for VANETs to prevent internal vehicles from broadcasting forged messages while simultaneously protecting the privacy of each vehicle against tracking attacks. In this paper, we propose a blockchain-based anonymous reputation system (BARS) to break the linkability between real identities and public keys to preserve privacy. The certificate and revocation transparency is implemented efficiently using two blockchains. We design a trust model to improve the trustworthiness of messages relying on the reputation of the sender based on both direct historical interactions and indirect opinions about the sender. Experiments are conducted to evaluate BARS in terms of security and performance and the results show that BARS is able to establish distributed trust management, while protecting the privacy of vehicles.
Blockchains have attracted a great deal of attention as a technology for the distributed management of register information at multiple nodes without a centralized system. However, they possess the drawbacks of low transaction throughput and long approval time. These problems can be addressed by shortening the block generation interval; however, shortening this interval alone has the effect of increasing the frequency of forks. In this study, we aim to shorten the block generation interval without increasing the fork generation rate by improving the network topology of the nodes and shortening the propagation time. We propose a neighbor node selection method forming a network topology with a short block propagation time. A blockchain simulator is used to demonstrate the effect of the proposed neighbor node selection method on the propagation delay of the network. This result indicates that the proposed method improves block propagation time.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا