Do you want to publish a course? Click here

A Note on Graph-Based Nearest Neighbor Search

67   0   0.0 ( 0 )
 Added by Yingyuan Xiao
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Nearest neighbor search has found numerous applications in machine learning, data mining and massive data processing systems. The past few years have witnessed the popularity of the graph-based nearest neighbor search paradigm because of its superiority over the space-partitioning algorithms. While a lot of empirical studies demonstrate the efficiency of graph-based algorithms, not much attention has been paid to a more fundamental question: why graph-based algorithms work so well in practice? And which data property affects the efficiency and how? In this paper, we try to answer these questions. Our insight is that the probability that the neighbors of a point o tends to be neighbors in the KNN graph is a crucial data property for query efficiency. For a given dataset, such a property can be qualitatively measured by clustering coefficient of the KNN graph. To show how clustering coefficient affects the performance, we identify that, instead of the global connectivity, the local connectivity around some given query q has more direct impact on recall. Specifically, we observed that high clustering coefficient makes most of the k nearest neighbors of q sit in a maximum strongly connected component (SCC) in the graph. From the algorithmic point of view, we show that the search procedure is actually composed of two phases - the one outside the maximum SCC and the other one in it, which is different from the widely accepted single or multiple paths search models. We proved that the commonly used graph-based search algorithm is guaranteed to traverse the maximum SCC once visiting any point in it. Our analysis reveals that high clustering coefficient leads to large size of the maximum SCC, and thus provides good answer quality with the help of the two-phase search procedure. Extensive empirical results over a comprehensive collection of datasets validate our findings.



rate research

Read More

156 - Junfeng He 2012
Fast approximate nearest neighbor (NN) search in large databases is becoming popular. Several powerful learning-based formulations have been proposed recently. However, not much attention has been paid to a more fundamental question: how difficult is (approximate) nearest neighbor search in a given data set? And which data properties affect the difficulty of nearest neighbor search and how? This paper introduces the first concrete measure called Relative Contrast that can be used to evaluate the influence of several crucial data characteristics such as dimensionality, sparsity, and database size simultaneously in arbitrary normed metric spaces. Moreover, we present a theoretical analysis to prove how the difficulty measure (relative contrast) determines/affects the complexity of Local Sensitive Hashing, a popular approximate NN search method. Relative contrast also provides an explanation for a family of heuristic hashing algorithms with good practical performance based on PCA. Finally, we show that most of the previous works in measuring NN search meaningfulness/difficulty can be derived as special asymptotic cases for dense vectors of the proposed measure.
We formulate approximate nearest neighbor (ANN) search as a multi-label classification task. The implications are twofold. First, tree-based indexes can be searched more efficiently by interpreting them as models to solve this task. Second, in addition to index structures designed specifically for ANN search, any type of classifier can be used as an index.
209 - Xian Wu , Moses Charikar 2020
Embedding into hyperbolic space is emerging as an effective representation technique for datasets that exhibit hierarchical structure. This development motivates the need for algorithms that are able to effectively extract knowledge and insights from datapoints embedded in negatively curved spaces. We focus on the problem of nearest neighbor search, a fundamental problem in data analysis. We present efficient algorithmic solutions that build upon established methods for nearest neighbor search in Euclidean space, allowing for easy adoption and integration with existing systems. We prove theoretical guarantees for our techniques and our experiments demonstrate the effectiveness of our approach on real datasets over competing algorithms.
The k-Nearest Neighbors (kNN) classifier is a fundamental non-parametric machine learning algorithm. However, it is well known that it suffers from the curse of dimensionality, which is why in practice one often applies a kNN classifier on top of a (pre-trained) feature transformation. From a theoretical perspective, most, if not all theoretical results aimed at understanding the kNN classifier are derived for the raw feature space. This leads to an emerging gap between our theoretical understanding of kNN and its practical applications. In this paper, we take a first step towards bridging this gap. We provide a novel analysis on the convergence rates of a kNN classifier over transformed features. This analysis requires in-depth understanding of the properties that connect both the transformed space and the raw feature space. More precisely, we build our convergence bound upon two key properties of the transformed space: (1) safety -- how well can one recover the raw posterior from the transformed space, and (2) smoothness -- how complex this recovery function is. Based on our result, we are able to explain why some (pre-trained) feature transformations are better suited for a kNN classifier than other. We empirically validate that both properties have an impact on the kNN convergence on 30 feature transformations with 6 benchmark datasets spanning from the vision to the text domain.
68 - Fabien Andre 2017
Efficient Nearest Neighbor (NN) search in high-dimensional spaces is a foundation of many multimedia retrieval systems. Because it offers low responses times, Product Quantization (PQ) is a popular solution. PQ compresses high-dimensional vectors into short codes using several sub-quantizers, which enables in-RAM storage of large databases. This allows fast answers to NN queries, without accessing the SSD or HDD. The key feature of PQ is that it can compute distances between short codes and high-dimensional vectors using cache-resident lookup tables. The efficiency of this technique, named Asymmetric Distance Computation (ADC), remains limited because it performs many cache accesses. In this paper, we introduce Quick ADC, a novel technique that achieves a 3 to 6 times speedup over ADC by exploiting Single Instruction Multiple Data (SIMD) units available in current CPUs. Efficiently exploiting SIMD requires algorithmic changes to the ADC procedure. Namely, Quick ADC relies on two key modifications of ADC: (i) the use 4-bit sub-quantizers instead of the standard 8-bit sub-quantizers and (ii) the quantization of floating-point distances. This allows Quick ADC to exceed the performance of state-of-the-art systems, e.g., it achieves a Recall@100 of 0.94 in 3.4 ms on 1 billion SIFT descriptors (128-bit codes).

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا