Do you want to publish a course? Click here

Explicit Soft Supersymmetry Breaking in the Heterotic M-Theory $B-L$ MSSM

54   0   0.0 ( 0 )
 Added by Anthony Ashmore
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The strongly coupled heterotic M-theory vacuum for both the observable and hidden sectors of the $B-L$ MSSM theory is reviewed, including a discussion of the bundle constraints that both the observable sector $SU(4)$ vector bundle and the a hidden sector bundle induced from a line bundle must satisfy. Gaugino condensation is then introduced within this context, and the hidden sector bundles that exhibit gaugino condensation are presented. The condensation scale is computed, singling out one line bundle whose associated condensation scale is low enough to be compatible with the energy scales available at the LHC. The corresponding region of Kahler moduli space where all bundle constraints are satisfied is presented. The generic form of the moduli dependent $F$-terms due to a gaugino superpotential - which spontaneously break $N=1$ supersymmetry in this sector - is presented and then given explicitly for the unique line bundle associated with the low condensation scale. The moduli dependent coefficients for each of the gaugino and scalar field soft supersymmetry breaking terms are computed leading to a low-energy effective Lagrangian for the observable sector matter fields. We then show that at a large number of points in Kahler moduli space that satisfy all bundle constraints, these coefficients are initial conditions for the renormalization group equations which, at low energy, lead to completely realistic physics satisfying all phenomenological constraints. Finally, we show that a substantial number of these initial points also satisfy a final constraint arising from the quadratic Higgs-Higgs conjugate soft supersymmetry breaking term.



rate research

Read More

We reconsider the ingredients of moduli stabilization in heterotic M-theory. On this line we close a gap in the literature deriving the Kaehler potential dependence on vector bundle moduli and charged matter. Crucial in this derivation is our superspace formulation of 5d heterotic M-theory taking into account the Bianchi identities modified by brane terms. Likewise, we obtain the Fayet-Iliopolous terms due to brane localised anomalous U(1)s. After assembling perturbative and non-perturbative contributions to the superpotential, we study supersymmetric (adS) vacua. It is found that the susy condition decouples the bundle moduli from the geometric moduli. We show that M-theory supersymmetric vacua without five-branes can be found, albeit not at phenomenologically interesting values of the geometric moduli. This result is fairly independent of the choice of vector bundle at the observable brane.
187 - S. P. de Alwis , Z. Lalak 2010
We discuss the possibility of finding scenarios, within type IIB string theory compactified on Calabi-Yau orientifolds with fluxes, for realizing gauge mediated supersymmetry breaking. We find that while in principle such scenarios are not ruled out, in practice it is hard to get acceptable constructions, since typically, supersymmetry breaking cannot be separated from the stabilization of the light modulus.
We give a formalism for constructing hidden sector bundles as extensions of sums of line bundles in heterotic $M$-theory. Although this construction is generic, we present it within the context of the specific Schoen threefold that leads to the physically realistic $B-L$ MSSM model. We discuss the embedding of the line bundles, the existence of the extension bundle, and a number of necessary conditions for the resulting bundle to be slope-stable and thus $N=1$ supersymmetric. An explicit example is presented, where two line bundles are embedded into the $SU(3)$ factor of the $E_{6} times SU(3)$ maximal subgroup of the hidden sector $E_{8}$ gauge group, and then enhanced to a non-Abelian $SU(3)$ bundle by extension. For this example, there are in fact six inequivalent extension branches, significantly generalizing that space of solutions compared with hidden sectors constructed from a single line bundle.
We calculate the low energy effective action of massless and massive complex linear superfields coupled to a massive U(1) vector multiplet. Our calculations include superspace higher derivative corrections and therefore go beyond previous results. Among the superspace higher derivatives we find that terms which lead to a deformation of the auxiliary field potential and may break supersymmetry are also generated. We show that the supersymmetry breaking vacua can only be trusted if there exists a hierarchy between the higher order terms. A renormalization group analysis shows that generically a hierarchy is not generated by the quantum corrections.
Perturbative heterotic string theory develops a single complex tachyonic mode beyond the Hagedorn temperature. We calculate the quartic effective potential for this tachyonic mode at the critical temperature. Equivalently, we determine the quartic effective potential for strong supersymmetric breaking via anti-perdiodic boundary conditions for fermions on a small circle. We give many details of the heterotic tachyon scattering amplitudes, including a unitarity check to fix all normalization constants. We discuss difficulties in obtaining an effective action valid at all radii. We argue that in certain variables, the quartic term in the potential is radius independent. Speculations on the properties of a new strongly curved phase that could occur after tachyon condensation are offered.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا