Do you want to publish a course? Click here

Learning to Localize Through Compressed Binary Maps

83   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

One of the main difficulties of scaling current localization systems to large environments is the on-board storage required for the maps. In this paper we propose to learn to compress the map representation such that it is optimal for the localization task. As a consequence, higher compression rates can be achieved without loss of localization accuracy when compared to standard coding schemes that optimize for reconstruction, thus ignoring the end task. Our experiments show that it is possible to learn a task-specific compression which reduces storage requirements by two orders of magnitude over general-purpose codecs such as WebP without sacrificing performance.



rate research

Read More

With the knowledge of action moments (i.e., trimmed video clips that each contains an action instance), humans could routinely localize an action temporally in an untrimmed video. Nevertheless, most practical methods still require all training videos to be labeled with temporal annotations (action category and temporal boundary) and develop the models in a fully-supervised manner, despite expensive labeling efforts and inapplicable to new categories. In this paper, we introduce a new design of transfer learning type to learn action localization for a large set of action categories, but only on action moments from the categories of interest and temporal annotations of untrimmed videos from a small set of action classes. Specifically, we present Action Herald Networks (AherNet) that integrate such design into an one-stage action localization framework. Technically, a weight transfer function is uniquely devised to build the transformation between classification of action moments or foreground video segments and action localization in synthetic contextual moments or untrimmed videos. The context of each moment is learnt through the adversarial mechanism to differentiate the generated features from those of background in untrimmed videos. Extensive experiments are conducted on the learning both across the splits of ActivityNet v1.3 and from THUMOS14 to ActivityNet v1.3. Our AherNet demonstrates the superiority even comparing to most fully-supervised action localization methods. More remarkably, we train AherNet to localize actions from 600 categories on the leverage of action moments in Kinetics-600 and temporal annotations from 200 classes in ActivityNet v1.3. Source code and data are available at url{https://github.com/FuchenUSTC/AherNet}.
Much of the remarkable progress in computer vision has been focused around fully supervised learning mechanisms relying on highly curated datasets for a variety of tasks. In contrast, humans often learn about their world with little to no external supervision. Taking inspiration from infants learning from their environment through play and interaction, we present a computational framework to discover objects and learn their physical properties along this paradigm of Learning from Interaction. Our agent, when placed within the near photo-realistic and physics-enabled AI2-THOR environment, interacts with its world and learns about objects, their geometric extents and relative masses, without any external guidance. Our experiments reveal that this agent learns efficiently and effectively; not just for objects it has interacted with before, but also for novel instances from seen categories as well as novel object categories.
Automatic generation of textual video descriptions that are time-aligned with video content is a long-standing goal in computer vision. The task is challenging due to the difficulty of bridging the semantic gap between the visual and natural language domains. This paper addresses the task of automatically generating an alignment between a set of instructions and a first person video demonstrating an activity. The sparse descriptions and ambiguity of written instructions create significant alignment challenges. The key to our approach is the use of egocentric cues to generate a concise set of action proposals, which are then matched to recipe steps using object recognition and computational linguistic techniques. We obtain promising results on both the Extended GTEA Gaze+ dataset and the Bristol Egocentric Object Interactions Dataset.
160 - Keren Ye , Mingda Zhang , Wei Li 2018
To alleviate the cost of obtaining accurate bounding boxes for training todays state-of-the-art object detection models, recent weakly supervised detection work has proposed techniques to learn from image-level labels. However, requiring discrete image-level labels is both restrictive and suboptimal. Real-world supervision usually consists of more unstructured text, such as captions. In this work we learn association maps between images and captions. We then use a novel objectness criterion to rank the resulting candidate boxes, such that high-ranking boxes have strong gradients along all edges. Thus, we can detect objects beyond a fixed object category vocabulary, if those objects are frequent and distinctive enough. We show that our objectness criterion improves the proposed bounding boxes in relation to prior weakly supervised detection methods. Further, we show encouraging results on object detection from image-level captions only.
We address temporal localization of events in large-scale video data, in the context of the Youtube-8M Segments dataset. This emerging field within video recognition can enable applications to identify the precise time a specified event occurs in a video, which has broad implications for video search. To address this we present two separate approaches: (1) a gradient boosted decision tree model on a crafted dataset and (2) a combination of deep learning models based on frame-level data, video-level data, and a localization model. The combinations of these two approaches achieved 5th place in the 3rd Youtube-8M video recognition challenge.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا