On the Power of Localized Perceptron for Label-Optimal Learning of Halfspaces with Adversarial Noise


Abstract in English

We study {em online} active learning of homogeneous halfspaces in $mathbb{R}^d$ with adversarial noise where the overall probability of a noisy label is constrained to be at most $ u$. Our main contribution is a Perceptron-like online active learning algorithm that runs in polynomial time, and under the conditions that the marginal distribution is isotropic log-concave and $ u = Omega(epsilon)$, where $epsilon in (0, 1)$ is the target error rate, our algorithm PAC learns the underlying halfspace with near-optimal label complexity of $tilde{O}big(d cdot polylog(frac{1}{epsilon})big)$ and sample complexity of $tilde{O}big(frac{d}{epsilon} big)$. Prior to this work, existing online algorithms designed for tolerating the adversarial noise are subject to either label complexity polynomial in $frac{1}{epsilon}$, or suboptimal noise tolerance, or restrictive marginal distributions. With the additional prior knowledge that the underlying halfspace is $s$-sparse, we obtain attribute-efficient label complexity of $tilde{O}big( s cdot polylog(d, frac{1}{epsilon}) big)$ and sample complexity of $tilde{O}big(frac{s}{epsilon} cdot polylog(d) big)$. As an immediate corollary, we show that under the agnostic model where no assumption is made on the noise rate $ u$, our active learner achieves an error rate of $O(OPT) + epsilon$ with the same running time and label and sample complexity, where $OPT$ is the best possible error rate achievable by any homogeneous halfspace.

Download