No Arabic abstract
Understanding and predicting divertor heat-load width ${lambda}_q$ is a critically important problem for an easier and more robust operation of ITER with high fusion gain. Previous predictive simulation data for ${lambda}_q$ using the extreme-scale edge gyrokinetic code XGC1 in the electrostatic limit under attached divertor plasma conditions in three major US tokamaks [C.S. Chang et al., Nucl. Fusion 57, 116023 (2017)] reproduced the Eich and Goldston attached-divertor formula results [formula #14 in T. Eich et al., Nucl. Fusion 53, 093031 (2013); R.J. Goldston, Nucl. Fusion 52, 013009 (2012)], and furthermore predicted over six times wider ${lambda}_q$ than the maximal Eich and Goldston formula predictions on a full-power (Q = 10) scenario ITER plasma. After adding data from further predictive simulations on a highest current JET and highest-current Alcator C-Mod, a machine learning program is used to identify a new scaling formula for ${lambda}_q$ as a simple modification to the Eich formula #14, which reproduces the Eich scaling formula for the present tokamaks and which embraces the wide ${lambda}_q^X{GC}$ for the full-current Q = 10 ITER plasma. The new formula is then successfully tested on three more ITER plasmas: two corresponding to long burning scenarios with Q = 5 and one at low plasma current to be explored in the initial phases of ITER operation. The new physics that gives rise to the wider ${lambda}q_^{XGC} is identified to be the weakly-collisional, trapped-electron-mode turbulence across the magnetic separatrix, which is known to be an efficient transporter of the electron heat and mass. Electromagnetic turbulence and high-collisionality effects on the new formula are the next study topics for XGC1.
The distribution of particles and power to plasma-facing components is of key importance in the design of next-generation fusion devices. Power and particle decay lengths have been measured in a number of MAST L-mode and H-mode discharges in order to determine their parametric dependencies, by fitting power and particle flux profiles measured by divertor Langmuir probes, to a convolution of an exponential decay and a Gaussian function. In all discharges analysed, it is found that exponential decay lengths mapped to the midplane are mostly dependent on separatrix electron density and plasma current (or parallel connection length). The widths of the convolved Gaussian functions have been used to derive an approximate diffusion coefficient, which is found to vary from 1m2/s to 7m2/s, and is systematically lower in H-mode compared with L-mode.
The XGC1 edge gyrokinetic code is used for a high fidelity prediction for the width of the heat-flux to divertor plates in attached plasma condition. The simulation results are validated against the empirical scaling $lambda_q propto B_P^{-gamma}$ obtained from present tokamak devices, where $lambda_q$ is the divertor heat-flux width mapped to the outboard midplane and $gamma_q=1.19$ as defined by T. Eich et al. [Nucl. Fusion 53 (2013) 093031], and $B_P$ is the magnitude of the poloidal magnetic field at outboard midplane separatrix surface. This empirical scaling predicts $lambda_q leq 1mm$ when extrapolated to ITER, which would require operation with very high separatrix densities $(n_{sep}/n_{Greenwald} > 0.6)$ in the Q=10 scenario to achieve semi-detached plasma operation and high radiative fractions leading to acceptable divertor power fluxes. XGC1 predicts, however, that $lambda_q$ for ITER is over 5 mm, suggesting that operation in the ITER Q=10 scenario with acceptable divertor power loads could be obtained over a wider range of plasma separatrix densities and radiative fractions. The physics reason behind this difference is, according to the XGC1 results, that while the ion magnetic drift contribution to the divertor heat-flux width is wider in the present tokamaks, the turbulent electron contribution is wider in ITER. A high current C-Mod discharge is found to be in a mixed regime: While the heat-flux width by the ion neoclassical magnetic drift is still wider than the turbulent electron heat-flux width, the heat-flux magnitude is dominated by the narrower electron heat-flux.
The guiding-center kinetic neoclassical transport code, XGC0, [C.S. Chang et. al, Phys. Plasmas 11, 2649 (2004)] is used to compute the heat fluxes and the heat-load width in the outer divertor plates of Alcator C-Mod and DIII-D tokamaks. The dependence of the width of heat-load fluxes on neoclassical effects, neutral collisions and anomalous transport is investigated using the XGC0 code. The XGC0 code includes realistic X-point geometry, a neutral source model, the effects of collisions, and a diffusion model for anomalous transport. It is observed that width of the XGC0 neoclassical heat-load is approximately inversely proportional to the total plasma current $I_{rm p}$. The scaling of the width of the divertor heat-load with plasma current is examined for an Alcator C-Mod discharge and four DIII-D discharges. The scaling of the divertor heat-load width with plasma current is found to be weaker in the Alcator C-Mod discharge compared to scaling found in the DIII-D discharges. The effect of neutral collisions on the $1/I_{rm p}$ scaling of heat-load width is shown not to be significant. Although inclusion of poloidally uniform anomalous transport results in a deviation from the $1/I_{rm p}$ scaling, the inclusion of the anomalous transport that is driven by ballooning-type instabilities results in recovering the neoclassical $1/I_{rm p}$ scaling. The Bohm or Gyro-Bohm scalings of anomalous transport does not strongly affect the dependence of the heat-load width on plasma current. The inclusion of anomalous transport, in general, results in widening the width of neoclassical divertor heat-load and enhances the neoclassical heat-load fluxes on the divertor plates. Understanding heat transport in the tokamak scrape-off layer plasmas is important for strengthening the basis for predicting divertor conditions in ITER.
The present paper deals with the surface heat flux estimation with thermocouples (TC) and fiber Bragg grating (FBG) embedded in the plasma facing components (PFC) of the WEST tokamak. A 2D heat transfer model combined with the conjugate gradient method (CGM) and the adjoint state is used to estimate the plasma heat flux deposited on the PFC. The plasma heat flux is characterized by the time evolution of its amplitude and spatial shape on the target (heat flux decay length $lambda^t_q$, power spreading in the private flux region $S^t$ and the strike point location $x_0$). As a first step, five ohmic pulses have been investigated with different magnetic configuration and divertor X-point height varying from 44 to 68 mm from the surface. Despite an outboard shift, the relative displacements of the outer strike point as well as the heat flux decay length derived from the TC/FBG systems are consistent with the magnetic equilibrium reconstruction.
Self-consistent simulations of neoclassical and electrostatic turbulent transport in a DIII-D H-mode edge plasma under resonant magnetic perturbations (RMPs) have been performed using the global total-f gyrokinetic particle-in-cell code XGC, in order to study density-pump out and electron heat confinement. The RMP field is imported from the extended magneto-hydrodynamics (MHD) code M3D-C1, taking into account the linear two-fluid plasma response. With both neoclassical and turbulence physics considered together, the XGC simulation reproduces two key features of experimentally observed edge transport under RMPs: increased radial particle transport in the pedestal region that is sufficient to account for the experimental pump-out rate, and suppression of the electron heat flux in the steepest part of the edge pedestal. In the simulation, the density fluctuation amplitude of modes moving in the electron diamagnetic direction increases due to interaction with RMPs in the pedestal shoulder and outward, while the electron temperature fluctuation amplitude decreases.