Do you want to publish a course? Click here

Extremely low linear polarization of comet C/2018 V1 (Machholz-Fujikawa-Iwamoto)

96   0   0.0 ( 0 )
 Added by Oleksandra Ivanova
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We measured the degree of linear polarization P of comet C/2018 V1 (Machholz-Fujikawa-Iwamoto) with the broadband Johnson V filter in mid-November of 2018. Within a radius of r{ho}=17,000 km of the inner coma, we detected an extremely low linear polarization at phase angles from 83 to 91.2 degree and constrained the polarization maximum to Pmax = (6.8 +/- 1.8)%. This is the lowest Pmax ever measured in a comet. Using model agglomerated debris particles, we reproduced the polarimetric response of comet C/2018 V1. Four retrieved refractive indices closely match what was experimentally found in Mg-rich silicates with little or no iron content. Moreover, the size distribution of the agglomerated debris particles appears in good quantitative agreement with the in situ findings of comet 1P/Halley. The dust model of polarization of comet C/2018 V1 suggests a strongly negative polarization with amplitude |Pmin| = 5%-7%; whereas, an interpretation based on gaseous emission requires no negative polarization at small phase angles. This dramatic difference could be used to discriminate gaseous-emission and dust explanations in low-Pmax comets in future.



rate research

Read More

We aim to determine the production rates of several parent and product volatiles and the 12C/13C isotopic carbon ratio in the long-period comet C/2004 Q2 (Machholz), which is likely to originate from the Oort Cloud. The line emission from several molecules in the coma was measured with high signal-to-noise ratio in January 2005 at heliocentric distance of 1.2 AU by means of high-resolution spectroscopic observations using the Submillimeter Telescope (SMT). We have obtained production rates of several volatiles (CH3OH, HCN, H13CN, HNC, H2CO, CO and CS) by comparing the observed and simulated line-integrated intensities. Furthermore, multiline observations of the CH3OH (7-6) series allow us to estimate the rotational temperature using the rotation diagram technique. We find that the CH3OH population distribution of the levels sampled by these lines can be described by a rotational temperature of 40 pm 3 K. Derived mixing ratios relative to hydrogen cyanide are CO/CH3OH/H2CO/CS/HNC/H13CN/HCN = 30.9/24.6/4.8/0.57/0.031/0.013/1 assuming a pointing offset of 8 due to the uncertain ephemeris at the time of the observations and the telescope pointing error. The measured relative molecular abundances in C/2004 Q2 (Machholz) are between low- to typical values of those obtained in Oort Cloud comets, suggesting that it has visited the inner solar system previously and undergone thermal processing. The HNC/HCN abundance ratio of ~3.1% is comparable to that found in other comets, accounting for the dependence on the heliocentric distance, and could possibly be explained by ion-molecule chemical processes in the low-temperature atmosphere. From a tentative H13CN detection, the measured value of 97 pm 30 for the H12CN/H13CN isotopologue pair is consistent with a telluric value.
Aims. Rotation periods of cometary nuclei are scarce, though important when studying the nature and origin of these objects. Our aim is to derive a rotation period for the nucleus of comet C/2004 Q2 (Machholz). Methods. C/2004 Q2 (Machholz) was monitored using the Merope CCD camera on the Mercator telescope at La Palma, Spain, in January 2005, during its closest approach to Earth, implying a high spatial resolution (50km per pixel). One hundred seventy images were recorded in three different photometric broadband filters, two blue ones (Geneva U and B) and one red (Cousins I). Magnitudes for the comets optocentre were derived with very small apertures to isolate the contribution of the nucleus to the bright coma, including correction for the seeing. Our CCD photometry also permitted us to study the coma profile of the inner coma in the different bands. Results. A rotation period for the nucleus of P = 9.1 +/- 0.2 h was derived. The period is on the short side compared to published periods of other comets, but still shorter periods are known. Nevertheless, comparing our results with images obtained in the narrowband CN filter, the possibility that our method sampled P/2 instead of P cannot be excluded. Coma profiles are also presented, and a terminal ejection velocity of the grains v_gr = 1609 +/- 48 m/s is found from the continuum profile in the I band.
We present results of two-year photometric monitoring of Comet C/2011 J2 (LINEAR) that spans the time period from February 2013 through December 2014, before and after perihelion passage. The observations were conducted with broadband R filter. Analysis of observations of Comet C/2011 J2 (LINEAR) allows estimating the nucleus radius as function of geometric albedo and phase-darkening coefficient. Furthermore, our observations showed split of the comet. Fragment (B) additional to the primary C/2011 J2 nucleus was unambiguously detected; relative velocity is estimated to be near 0.17 /day. We derive the Afrho parameter and estimate the dust production rate in Comet C/2011 J2 (LINEAR) over the entire run of observations. We found a noticeable increase in Afrho parameter between September 18, 2014 and November 5, 2014, epoch when the nucleus presumably got split. On September 28, 2014, we observed a transit of the 16-magnitude star (USNO-A2 1275-18299027) near nucleus of the Comet C/2011 J2 (LINEAR). We retrieve the optical depth of the coma 0.034. The filling factor f that corresponds to such optical depth is in good quantitative agreement with the value that can be derived from the Afrho parameter under reasonable assumption on geometric albedo of cometary dust.
High-dispersion (l/dl ~ 25,000) infrared spectra of Comet C/2004 Q2 (Machholz) were acquired on Nov. 28-29, 2004, and Jan. 19, 2005 (UT dates) with NIRSPEC at the Keck-2 telescope on Mauna Kea. We detected H2O, CH4, C2H2, C2H6, CO, H2CO, CH3OH, HCN, and NH3 and we conducted a sensitive search for CH3D. We report rotational temperatures, production rates, and mixing ratios (with respect to H2O) at heliocentric distances of 1.49 AU (Nov. 2004) and 1.21 AU (Jan. 2005). We highlight three principal results: (1) The mixing ratios of parent volatiles measured at 1.49 AU and 1.21 AU agree within confidence limits, consistent with homogeneous composition in the mean volatile release from the nucleus of C/2004 Q2. Notably, the relative abundance of C2H6/C2H2 is substantially higher than those measured in other comets, while the mixing ratios C2H6/H2O, CH3OH/H2O, and HCN/H2O are similar to those observed in comets, referred to as organics-normal. (2) The spin temperature of CH4 is > 35-38 K, an estimate consistent with the more robust spin temperature found for H2O. (3) We obtained a 3s upper limit of CH3D/CH4 < 0.020 (D/H < 0.005). This limit suggests that methane released from the nucleus of C/2004 Q2 is not dominated by a component formed in extremely cold (near 10 K) environments. Formation pathways of both interstellar and nebular origin consistent with the measured D/H in methane are discussed. Evaluating the relative contributions of these pathways requires further modeling of chemistry including both gas-phase and gas-grain processes in the natal interstellar cloud and in the protoplanetary disk.
The population of comets hosted by the Oort cloud is heterogeneous. Most studies in this area focused on highly active objects, those with small perihelion distances or examples of objects with peculiar physical properties and/or unusual chemical compositions. This may have produced a biased sample of Oort cloud comets in which the most common objects may be rare, particularly those with perihelia well beyond the orbit of the Earth. Within this context, the known Oort cloud comets may not be representative of the full sample. Here, we study the spectral properties in the visible region and the cometary activity of Comet C/2018 F4 (PANSTARRS). We also explore its orbital evolution with the aim of understanding its origin within the context of known minor bodies moving along nearly parabolic or hyperbolic paths. We present observations obtained with the 10.4 m Gran Telescopio Canarias (GTC), derive the spectral class and visible slope of C/2018 F4 and characterise its level of cometary activity. Direct N-body simulations are carried out to explore its orbital evolution. The absolute magnitude of C/2018 F4 is Hr=13.62+/-0.04. Assuming a pV=0.04 its diameter is D<10.4 km. The object presents a conspicuous coma, with a level of activity comparable to those of other comets observed at similar heliocentric distances. Comet C/2018 F4 has a visible spectrum consistent with that of an X-type asteroid, and has a spectral slope S=4.0+/-1.0 %/1000AA and no evidence of hydration. The spectrum matches those of well-studied primitive asteroids and comets. The analysis of its dynamical evolution prior to discovery suggests that C/2018 F4 is not of extrasolar origin. Although the present-day heliocentric orbit of C/2018 F4 is slightly hyperbolic, its observational properties and past orbital evolution are consistent with those of a dynamically old comet with an origin in the Oort cloud.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا