Do you want to publish a course? Click here

SMART Frame Selection for Action Recognition

150   0   0.0 ( 0 )
 Added by Shreyank N Gowda
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Action recognition is computationally expensive. In this paper, we address the problem of frame selection to improve the accuracy of action recognition. In particular, we show that selecting good frames helps in action recognition performance even in the trimmed videos domain. Recent work has successfully leveraged frame selection for long, untrimmed videos, where much of the content is not relevant, and easy to discard. In this work, however, we focus on the more standard short, trimmed action recognition problem. We argue that good frame selection can not only reduce the computational cost of action recognition but also increase the accuracy by getting rid of frames that are hard to classify. In contrast to previous work, we propose a method that instead of selecting frames by considering one at a time, considers them jointly. This results in a more efficient selection, where good frames are more effectively distributed over the video, like snapshots that tell a story. We call the proposed frame selection SMART and we test it in combination with different backbone architectures and on multiple benchmarks (Kinetics, Something-something, UCF101). We show that the SMART frame selection consistently improves the accuracy compared to other frame selection strategies while reducing the computational cost by a factor of 4 to 10 times. Additionally, we show that when the primary goal is recognition performance, our selection strategy can improve over recent state-of-the-art models and frame selection strategies on various benchmarks (UCF101, HMDB51, FCVID, and ActivityNet).



rate research

Read More

Action recognition is an open and challenging problem in computer vision. While current state-of-the-art models offer excellent recognition results, their computational expense limits their impact for many real-world applications. In this paper, we propose a novel approach, called AR-Net (Adaptive Resolution Network), that selects on-the-fly the optimal resolution for each frame conditioned on the input for efficient action recognition in long untrimmed videos. Specifically, given a video frame, a policy network is used to decide what input resolution should be used for processing by the action recognition model, with the goal of improving both accuracy and efficiency. We efficiently train the policy network jointly with the recognition model using standard back-propagation. Extensive experiments on several challenging action recognition benchmark datasets well demonstrate the efficacy of our proposed approach over state-of-the-art methods. The project page can be found at https://mengyuest.github.io/AR-Net
Computer-vision hospital systems can greatly assist healthcare workers and improve medical facility treatment, but often face patient resistance due to the perceived intrusiveness and violation of privacy associated with visual surveillance. We downsample video frames to extremely low resolutions to degrade private information from surveillance videos. We measure the amount of activity-recognition information retained in low resolution depth images, and also apply a privately-trained DCSCN super-resolution model to enhance the utility of our images. We implement our techniques with two actual healthcare-surveillance scenarios, hand-hygiene compliance and ICU activity-logging, and show that our privacy-preserving techniques preserve enough information for realistic healthcare tasks.
Video Analytics Software as a Service (VA SaaS) has been rapidly growing in recent years. VA SaaS is typically accessed by users using a lightweight client. Because the transmission bandwidth between the client and cloud is usually limited and expensive, it brings great benefits to design cloud video analysis algorithms with a limited data transmission requirement. Although considerable research has been devoted to video analysis, to our best knowledge, little of them has paid attention to the transmission bandwidth limitation in SaaS. As the first attempt in this direction, this work introduces a problem of few-frame action recognition, which aims at maintaining high recognition accuracy, when accessing only a few frames during both training and test. Unlike previous work that processed dense frames, we present Temporal Sequence Distillation (TSD), which distills a long video sequence into a very short one for transmission. By end-to-end training with 3D CNNs for video action recognition, TSD learns a compact and discriminative temporal and spatial representation of video frames. On Kinetics dataset, TSD+I3D typically requires only 50% of the number of frames compared to I3D, a state-of-the-art video action recognition algorithm, to achieve almost the same accuracies. The proposed TSD has three appealing advantages. Firstly, TSD has a lightweight architecture and can be deployed in the client, eg. mobile devices, to produce compressed representative frames to save transmission bandwidth. Secondly, TSD significantly reduces the computations to run video action recognition with compressed frames on the cloud, while maintaining high recognition accuracies. Thirdly, TSD can be plugged in as a preprocessing module of any existing 3D CNNs. Extensive experiments show the effectiveness and characteristics of TSD.
In this work, we propose Knowledge Integration Networks (referred as KINet) for video action recognition. KINet is capable of aggregating meaningful context features which are of great importance to identifying an action, such as human information and scene context. We design a three-branch architecture consisting of a main branch for action recognition, and two auxiliary branches for human parsing and scene recognition which allow the model to encode the knowledge of human and scene for action recognition. We explore two pre-trained models as teacher networks to distill the knowledge of human and scene for training the auxiliary tasks of KINet. Furthermore, we propose a two-level knowledge encoding mechanism which contains a Cross Branch Integration (CBI) module for encoding the auxiliary knowledge into medium-level convolutional features, and an Action Knowledge Graph (AKG) for effectively fusing high-level context information. This results in an end-to-end trainable framework where the three tasks can be trained collaboratively, allowing the model to compute strong context knowledge efficiently. The proposed KINet achieves the state-of-the-art performance on a large-scale action recognition benchmark Kinetics-400, with a top-1 accuracy of 77.8%. We further demonstrate that our KINet has strong capability by transferring the Kinetics-trained model to UCF-101, where it obtains 97.8% top-1 accuracy.
Neural Networks require large amounts of memory and compute to process high resolution images, even when only a small part of the image is actually informative for the task at hand. We propose a method based on a differentiable Top-K operator to select the most relevant parts of the input to efficiently process high resolution images. Our method may be interfaced with any downstream neural network, is able to aggregate information from different patches in a flexible way, and allows the whole model to be trained end-to-end using backpropagation. We show results for traffic sign recognition, inter-patch relationship reasoning, and fine-grained recognition without using object/part bounding box annotations during training.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا