Non-orthogonal Spin-Momentum Locking


Abstract in English

Spin-momentum locking is a unique feature of spin-orbit coupled materials and a key to their promise of applications in spintronics and quantum computation. Much of the existing work has been focused on an orthogonal locking between the directions of spin and momentum vectors in the context of both topological and non-topological materials. Mechanisms responsible for non-orthogonal spin-momentum locking (NOSML) have drawn little attention, although an NOSML effect has been reported on the topological surface of $alpha$-$Sn$. Here, we demonstrate how spin-orbit scattering from non-magnetic impurities can produce the NOSML state. The parameter describing spin-orbit coupling strength in our analysis of the NOMSL could be extracted directly from the spin-resolved angle-resolved photoemission (S-ARPES) spectra. Our formalism is applicable to all spin-orbit coupled systems and not limited only to topological states. An understanding of NOSML effects bears on spin-orbit dependent phenomena more generally, including issues of spin-to-charge conversion and the interpretation of quasiparticle interference (QPI) patterns and scanning-tunneling spectra (STS) in materials.

Download