Weyl invariant Jacobi forms along Higgsing trees


Abstract in English

Using topological string techniques, we compute BPS counting functions of 5d gauge theories which descend from 6d superconformal field theories upon circle compactification. Such theories are naturally organized in terms of nodes of Higgsing trees. We demonstrate that the specialization of the partition function as we move from the crown to the root of a tree is determined by homomorphisms between rings of Weyl invariant Jacobi forms. Our computations are made feasible by the fact that symmetry enhancements of the gauge theory which are manifest on the massless spectrum are inherited by the entire tower of BPS particles. In some cases, these symmetry enhancements have a nice relation to the 1-form symmetry of the associated gauge theory.

Download