Do you want to publish a course? Click here

An Outburst by AM CVn binary SDSS J113732.32+405458.3

166   0   0.0 ( 0 )
 Added by Tin Long Sunny Wong
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery of a one magnitude increase in the optical brightness of the 59.63 minute orbital period AM CVn binary SDSS J113732.32+405458.3. Public $g$, $r$, and $i$ band data from the Zwicky Transient Facility (ZTF) exhibit a decline over a 300 day period, while a few data points from commissioning show that the peak was likely seen. Such an outburst is likely due to a change in the state of the accretion disk, making this the longest period AM CVn binary to reveal an unstable accretion disk. The object is now back to its previously observed (by SDSS and PS-1) quiescent brightness that is likely set by the accreting white dwarf. Prior observations of this object also imply that the recurrence times for such outbursts are likely more than 12 years.



rate research

Read More

{it Kepler} satellite photometry and phase-resolved spectroscopy of the ultracompact AM CVn type binary SDSS J190817.07+394036.4 are presented. The average spectra reveal a variety of weak metal lines of different species, including silicon, sulphur and magnesium as well as many lines of nitrogen, beside the strong absorption lines of neutral helium. The phase-folded spectra and the Doppler tomograms reveal an S-wave in emission in the core of the He I 4471 AA,absorption line at a period of $P_{rm orb}=1085.7pm2.8$,sec identifying this as the orbital period of the system. The Si II, Mg II and the core of some He I lines show an S-wave in absorption with a phase offset of $170pm15^circ$ compared to the S-wave in emission. The N II, Si III and some helium lines do not show any phase variability at all. The spectroscopic orbital period is in excellent agreement with a period at $P_{rm orb}=1085.108(9)$,sec detected in the three year {it Kepler} lightcurve. A Fourier analysis of the Q6 to Q17 short cadence data obtained by {it Kepler} revealed a large number of frequencies above the noise level where the majority shows a large variability in frequency and amplitude. In an O-C analysis we measured a $vertdot{P}vertsim1.0,$x$,10^{-8},$s,s$^{-1}$ for some of the strongest variations and set a limit for the orbital period to be $vertdot{P}vert<10^{-10}$s,s$^{-1}$. The shape of the phase folded lightcurve on the orbital period indicates the motion of the bright spot. Models of the system were constructed to see whether the phases of the radial velocity curves and the lightcurve variation can be combined to a coherent picture. However, from the measured phases neither the absorption nor the emission can be explained to originate in the bright spot.
We present the discovery of SDSS J135154.46-064309.0, a short-period variable observed using 30-minute cadence photometry in K2 Campaign 6. Follow-up spectroscopy and high-speed photometry support a classification as a new member of the rare class of ultracompact accreting binaries known as AM CVn stars. The spectroscopic orbital period of $15.65 pm 0.12$,minutes makes this system the fourth-shortest period AM CVn known, and the second system of this type to be discovered by the Kepler spacecraft. The K2 data show photometric periods at $15.7306 pm 0.0003$,minutes, $16.1121 pm 0.0004$,minutes and $664.82 pm 0.06$,minutes, which we identify as the orbital period, superhump period, and disc precession period, respectively. From the superhump and orbital periods we estimate the binary mass ratio $q = M_2/M_1 = 0.111 pm 0.005$, though this method of mass ratio determination may not be well calibrated for helium-dominated binaries. This system is likely to be a bright foreground source of gravitational waves in the frequency range detectable by LISA, and may be of use as a calibration source if future studies are able to constrain the masses of its stellar components.
86 - C. Duffy , G. Ramsay , D. Steeghs 2021
We present results of our analysis of up to 15 years of photometric data from eight AM CVn systems with orbital periods between 22.5 and 26.8 min. Our data has been collected from the GOTO, ZTF, Pan-STARRS, ASAS-SN and Catalina all-sky surveys and amateur observations collated by the AAVSO. We find evidence that these interacting ultra-compact binaries show a similar diversity of long term optical properties as the hydrogen accreting dwarf novae. We found that AM CVn systems in the previously identified accretion disc instability region are not a homogenous group. Various members of the analysed sample exhibit behaviour reminiscent of Z Cam systems with long super outbursts and standstills, SU UMa systems with regular, shorter super outbursts, and nova-like systems which appear only in a high state. The addition of TESS full frame images of one of these systems, KL Dra, reveals the first evidence for normal outbursts appearing as a precursor to super outbursts in an AM CVn system. Our results will inform theoretical modelling of the outbursts of hydrogen deficient systems.
We examine the relationship between superoutburst duration $t_{rm dur}$ and orbital period $P_{rm orb}$ in AM CVn ultra-compact binary systems. We show that the previously determined steep relation derived by Levitan et al (2015) was strongly influenced by the inclusion of upper limits for systems with a relatively long orbital period in their fit. Excluding the upper limit values and including $t_{rm dur}$ values for three systems at long $P_{rm orb}$ which were not considered previously, then $d log (t_{rm dur})/ d log (P_{rm orb})$ is flat as predicted by Cannizzo & Nelemans(2015)
We consider initial stage of the evolution of AM CVn type stars with white dwarf donors, which is accompanied by thermonuclear explosions in the layer of accreted He. It is shown that the accretion never results in detonation of He and accretors in AM CVn stars finish their evolution as massive WDs. We found, for the first time, that in the outbursts the synthesis of n-rich isotopes, initiated by the ${mathrm{^{22}{Ne}(alpha,n)^{25}Mg}}$ reaction becomes possible.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا