Do you want to publish a course? Click here

GDPR-inspired IoT Ontology enabling Semantic Interoperability, Federation of Deployments and Privacy-Preserving Applications

64   0   0.0 ( 0 )
 Added by Rachit Agarwal
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Testing and experimentation are crucial for promoting innovation and building systems that can evolve to meet high levels of service quality. IoT data that belong to users and from which their personal information can be inferred are frequently shared in the background of IoT systems with third parties for experimentation and building quality services. This data sharing raises privacy concerns especially since in most cases the data are gathered and shared without the users knowledge or explicit consent or for different purposes than the one for which the data were initially gathered. With the introduction of GDPR, IoT systems and experimentation platforms that federate data from different deployments, testbeds and data providers must be privacy-preserving. The wide adoption of IoT applications in scenarios ranging from smart cities to Industry 4.0 has raised concerns with respect to the privacy of users data collected using IoT devices. Many experimental smart city applications are also using crowdsourcing data. Inspired by the GDPR requirements, we propose an IoT ontology built using available standards that enhances privacy, enables semantic interoperability between IoT deployments and supports the development of privacy-preserving experimental IoT applications. On top, we propose recommendations on how to efficiently use the ontology within IoT testbed and federating platforms. Our ontology is validated for different quality assessment criteria using standard validation tools. We focus on experimentation without loss of generality, because it covers scenarios from both research and industry, that are directly linked with innovation.



rate research

Read More

The infection rate of COVID-19 and lack of an approved vaccine has forced governments and health authorities to adopt lockdowns, increased testing, and contact tracing to reduce the spread of the virus. Digital contact tracing has become a supplement to the traditional manual contact tracing process. However, although there have been a number of digital contact tracing apps proposed and deployed, these have not been widely adopted owing to apprehensions surrounding privacy and security. In this paper, we propose a blockchain-based privacy-preserving contact tracing protocol, Did I Meet You (DIMY), that provides full-lifecycle data privacy protection on the devices themselves as well as on the back-end servers, to address most of the privacy concerns associated with existing protocols. We have employed Bloom filters to provide efficient privacy-preserving storage, and have used the Diffie-Hellman key exchange for secret sharing among the participants. We show that DIMY provides resilience against many well known attacks while introducing negligible overheads. DIMYs footprint on the storage space of clients devices and back-end servers is also significantly lower than other similar state of the art apps.
84 - Sean Simmons , Cenk Sahinalp , 2016
The projected increase of genotyping in the clinic and the rise of large genomic databases has led to the possibility of using patient medical data to perform genomewide association studies (GWAS) on a larger scale and at a lower cost than ever before. Due to privacy concerns, however, access to this data is limited to a few trusted individuals, greatly reducing its impact on biomedical research. Privacy preserving methods have been suggested as a way of allowing more people access to this precious data while protecting patients. In particular, there has been growing interest in applying the concept of differential privacy to GWAS results. Unfortunately, previous approaches for performing differentially private GWAS are based on rather simple statistics that have some major limitations. In particular, they do not correct for population stratification, a major issue when dealing with the genetically diverse populations present in modern GWAS. To address this concern we introduce a novel computational framework for performing GWAS that tailors ideas from differential privacy to protect private phenotype information, while at the same time correcting for population stratification. This framework allows us to produce privacy preserving GWAS results based on two of the most commonly used GWAS statistics: EIGENSTRAT and linear mixed model (LMM) based statistics. We test our differentially private statistics, PrivSTRAT and PrivLMM, on both simulated and real GWAS datasets and find that they are able to protect privacy while returning meaningful GWAS results.
The European Materials and Modelling Ontology (EMMO) has recently been advanced in the computational molecular engineering and multiscale modelling communities as a top-level ontology, aiming to support semantic interoperability and data integration solutions, e.g., for research data infrastructures. The present work explores how top-level ontologies that are based on the same paradigm - the same set of fundamental postulates - as the EMMO can be applied to models of physical systems and their use in computational engineering practice. This paradigm, which combines mereology (in its extension as mereotopology) and semiotics (following Peirces approach), is here referred to as mereosemiotics. Multiple conceivable ways of implementing mereosemiotics are compared, and the design space consisting of the possible types of top-level ontologies following this paradigm is characterized.
Big Data is used by data miner for analysis purpose which may contain sensitive information. During the procedures it raises certain privacy challenges for researchers. The existing privacy preserving methods use different algorithms that results into limitation of data reconstruction while securing the sensitive data. This paper presents a clustering based privacy preservation probabilistic model of big data to secure sensitive information..model to attain minimum perturbation and maximum privacy. In our model, sensitive information is secured after identifying the sensitive data from data clusters to modify or generalize it.The resulting dataset is analysed to calculate the accuracy level of our model in terms of hidden data, lossed data as result of reconstruction. Extensive experiements are carried out in order to demonstrate the results of our proposed model. Clustering based Privacy preservation of individual data in big data with minimum perturbation and successful reconstruction highlights the significance of our model in addition to the use of standard performance evaluation measures.
The European Materials and Modelling Ontology (EMMO) is a top-level ontology designed by the European Materials Modelling Council to facilitate semantic interoperability between platforms, models, and tools in computational molecular engineering, integrated computational materials engineering, and related applications of materials modelling and characterization. Additionally, domain ontologies exist based on data technology developments from specific platforms. The present work discusses the ongoing work on establishing a European Virtual Marketplace Framework, into which diverse platforms can be integrated. It addresses common challenges that arise when marketplace-level domain ontologies are combined with a top-level ontology like the EMMO by ontology alignment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا