No Arabic abstract
We present a catalogue of homogeneous determined chromospheric emission (CE), stellar atmospheric parameters and ages for 1,674 FGK main sequence (MS), subgiant, and giant stars. The analysis of CE level and variability is also performed. We measured CE in the CaII lines using more than 180,000 high-resolution spectra from the HARPS spectrograph, as compiled in the AMBRE project, obtained between 2003 and 2019. We converted the fluxes to bolometric and photospheric corrected chromospheric emission ratio, $R_text{HK}$. Stellar atmospheric parameters $T_text{eff}$, $log g$, and [Fe/H] were retrieved from the literature or determined using an homogeneous method. $M_star$, $R_star$, and ages were determined from isochrone fitting. We analysed the CE distribution for the different luminosity classes and spectral types and confirmed the existence of the very inactive stars (VIS) and very active stars (VAS) populations at $log R_text{HK}< -5.1$ and $> -4.2$ dex, respectively. We found indications that the VIS population is composed mainly of subgiant and giant stars and that $log R_text{HK}= -5.1$ dex marks a transition in stellar evolution. There appears to be at least three regimes of variability, for inactive, active and very active stars, with the inactive and active regimes separated by a diagonal Vaughan-Preston gap. We show that stars with low activity levels do not necessarily have low variability. In the case of K dwarfs which show high CE variability, inactive and active stars have similar levels of activity variability. This means that activity levels alone are not enough to infer about the activity variability of a star. We also explained the shape of the VP gap observed in the distribution of CE by using the CE variability-level diagram. In the CE variability-level diagram, the Sun is located in the high variability region of the inactive MS stars zone. (Abridged)
Context: Chromospheric activity produces both photometric and spectroscopic variations that can be mistaken as planets. Large spots crossing the stellar disc can produce planet-like periodic variations in the light curve of a star. These spots clearly affect the spectral line profiles and their perturbations alter the line centroids creating a radial velocity jitter that might contaminate the variations induced by a planet. Precise chromospheric activity measurements are needed to estimate the activity-induced noise that should be expected for a given star. Aims: We obtain precise chromospheric activity measurements and projected rotational velocities for nearby (d < 25 pc) cool (spectral types F to K) stars, to estimate their expected activity-related jitter. As a complementary objective, we attempt to obtain relationships between fluxes in different activity indicator lines, that permit a transformation of traditional activity indicators, i.e, CaII H & K lines, to others that hold noteworthy advantages. Methods: We used high resolution (~50000) echelle optical spectra. To determine the chromospheric emission of the stars in the sample, we used the spectral subtraction technique. Rotational velocities were determined using the cross-correlation technique. To infer activity-related radial velocity (RV) jitter, we used empirical relationships between this jitter and the R_HK index. Results: We measured chromospheric activity, as given by different indicators throughout the optical spectra, and projected rotational velocities for 371 nearby cool stars. We have built empirical relationships among the most important chromospheric emission lines. Finally, we used the measured chromospheric activity to estimate the expected RV jitter for the active stars in the sample.
Studying chromospheric activity of contact binaries is an important way of revealing the magnetic activity processes of these systems. An efficient but somewhat neglected method for that is to follow the changes of the H$alpha$ line profiles via optical spectroscopy. Our goal was to perform a comprehensive analysis based on the optical spectral signs of chromospheric activity on the largest sample of contact binaries to date. We collected echelle spectra on 12 bright contact binaries and derived new radial velocity curves from our observations. For quantifying the apparent chromospheric activity levels of the systems, we subtracted self-constructed synthetic spectra from the observed ones and measured the equivalent widths of the residual H$alpha$-profiles at each observed epoch. Our well-sampled data set allowed us to study the short-term variations of chromospheric activity levels as well as to search for correlations between them and some basic physical parameters of the systems. Fitting the radial velocity curves, we re-determined the mass ratios and systemic velocities of all observed objects. We found that chromospheric activity levels of the studied systems show various changes during the orbital revolution: we see either flat, or one-peaked, or two-peaked distributions of equivalent width vs. the orbital phase. The first case means that the activity level is probably constant, while the latter two cases suggest the presence of one or two active longitudes at the stellar surfaces. Our correlation diagrams show that mean chromospheric activity levels may be in connection with orbital periods, B$-$V color indices, inverse Rossby numbers, and temperature differences of the components. At the same time, no clear trend is visible with respect to mass ratios, inclinations and fill-out factors of the systems. A- and W-type contact binaries in our sample show similar distributions.
Solar simulations and observations show that the detection of long-period Earth-like planets is expected to be very difficult with radial velocity techniques in the solar case because of activity. The inhibition of the convective blueshift in active regions (which is then dominating the signal) is expected to decrease toward lower mass stars, which would provide more suitable conditions. In this paper we build synthetic time series to be able to precisely estimate the effects of activity on exoplanet detectability for stars with a wide range of spectral type (F6-K4) and activity levels (old main-sequence stars). We simulated a very large number of realistic time series of radial velocity, chromospheric emission, photometry, and astrometry. We built a coherent grid of stellar parameters that covers a wide range in the (B-V, LogRHK) space based on our current knowledge of stellar activity, to be able to produce these time series. We describe the model and assumptions in detail. We present first results on chromospheric emission. We find the average LogRHK to correspond well to the target values that are expected from the model, and observe a strong effect of inclination on the average LogRHK (over time) and its long-term amplitude. This very large set of synthetic time series offers many possibilities for future analysis, for example, for the parameter effect, correction method, and detection limits of exoplanets.
Chromospheric activity has been thought to decay smoothly with time and, hence, to be a viable age indicator. Measurements in solar type stars in open clusters seem to point to a different conclusion: chromospheric activity undergoes a fast transition from Hyades level to that of the Sun after about 1 Gyr of main--sequence lifetime and any decaying trend before or after this transition must be much less significant than the short term variations.
We identify member stars of more than 90 open clusters in the LAMOST survey. With the method of Fang et al.(2018), the chromospheric activity (CA) indices logRCaK for 1091 member stars in 82 open clusters and logRH{alpha} for 1118 member stars in 83 open clusters are calculated. The relations between the average logRCaK, logRH{alpha} in each open cluster and its age are investigated in different Teff and [Fe/H] ranges. We find that CA starts to decrease slowly from logt = 6.70 to logt = 8.50, and then decreases rapidly until logt = 9.53. The trend becomes clearer for cooler stars. The quadratic functions between logR and logt with 4000K < Teff < 5500K are constructed, which can be used to roughly estimate ages of field stars with accuracy about 40% for logRCaK and 60% for logRH{alpha}.