No Arabic abstract
We present the results of a large multi-wavelength follow-up campaign of the Tidal Disruption Event (TDE) dsg, focusing on low to high resolution optical spectroscopy, X-ray, and radio observations. The galaxy hosts a super massive black hole of mass $rm (5.4pm3.2)times10^6,M_odot$ and careful analysis finds no evidence for the presence of an Active Galactic Nucleus, instead the TDE host galaxy shows narrow optical emission lines that likely arise from star formation activity. The transient is luminous in the X-rays, radio, UV and optical. The X-ray emission becomes undetected after $sim$125 days, and the radio luminosity density starts to decay at frequencies above 5.4 GHz by $sim$180 days. Optical emission line signatures of the TDE are present up to $sim$250 days after the discovery of the transient. The medium to high resolution spectra show traces of absorption lines that we propose originate in the self-gravitating debris streams. At late times, after $sim$200 days, narrow Fe lines appear in the spectra. The TDE was previously classified as N-strong, but after careful subtraction of the host galaxys stellar contribution, we find no evidence for these N lines in the TDE spectrum, even though O Bowen lines are detected. The observed properties of the X-ray emission are fully consistent with the detection of the inner regions of a cooling accretion disc. The optical and radio properties are consistent with this central engine seen at a low inclination (i.e., seen from the poles).
We construct a time-dependent relativistic accretion model for tidal disruption events (TDEs) with an $alpha-$viscosity and the pressure dominated by gas pressure. We also include the mass fallback rate $dot{M}_f$ for both full and partial disruption TDEs, and assume that the infalling debris forms a seed disc in time $t_c$, which evolves due to the mass addition from the infalling debris and the mass loss via accretion onto the black hole. Besides, we derive an explicit form for the disc height that depends on the angular momentum parameter in the disc. We show that the surface density of the disc increases at an initial time due to mass addition, and then decreases as the mass fallback rate decreases, which results in a decrease in the disc mass $M_{rm d}$ with a late-time evolution of $M_{rm d} propto t^{-1.05}$ and $M_{rm d} propto t^{-1.38}$ for full and partial disruption TDEs respectively, where $t$ is the time parameter. The bolometric luminosity $L$ shows a rise and decline that follows a power-law at late times given by $L propto t^{-1.8}$ and $L propto t^{-2.3}$ for full and partial disruption TDEs respectively. Our obtained luminosity declines faster than the luminosity inferred using $L propto dot{M}_f$. We also compute the light curves in various spectral bands.
Some tidal disruption events (TDEs) exhibit blueshifted broad absorption lines (BALs) in their rest-frame ultraviolet (UV) spectra, while others display broad emission lines (BELs). Similar phenomenology is observed in quasars and accreting white dwarfs, where it can be interpreted as an orientation effect associated with line formation in an accretion disc wind.We propose and explore a similar unification scheme for TDEs. We present synthetic UV spectra for disc and wind-hosting TDEs, produced by a state-of-the-art Monte Carlo ionization and radiative transfer code. Our models cover a wide range of disc wind geometries and kinematics. Such winds naturally reproduce both BALs and BELs. In general, sight lines looking into the wind cone preferentially produce BALs, while other orientations preferentially produce BELs. We also study the effect of wind clumping and CNO-processed abundances on the observed spectra. Clumpy winds tend to produce stronger UV emission and absorption lines, because clumping increases both the emission measure and the abundances of the relevant ionic species, the latter by reducing the ionization state of the outflow. The main effect of adopting CNO-processed abundances is a weakening of C~{sc iv}~1550~AA~ and an enhancement of N textsc{v}~1240~AA~ in the spectra. We conclude that line formation in an accretion disc wind is a promising mechanism for explaining the diverse UV spectra of TDEs. If this is correct, the relative number of BAL and BEL TDEs can be used to estimate the covering factor of the outflow. The models in this work are publicly available online and upon request.
We report the discovery of non-stellar hydrogen Balmer and metastable helium absorption lines accompanying a transient, high-velocity (0.05$c$) broad absorption line (BAL) system in the optical spectra of the tidal disruption event (TDE) AT2018zr ($z=0.071$). In the HST UV spectra, absorption of high- and low-ionization lines are also present at this velocity, making AT2018zr resemble a low-ionization broad absorption line (LoBAL) QSO. We conclude that these transient absorption features are more likely to arise in fast outflows produced by the TDE than absorbed by the unbound debris. In accordance with the outflow picture, we are able to reproduce the flat-topped H$alpha$ emission in a spherically expanding medium, without invoking the typical prescription of an elliptical disk. We also report the appearance of narrow ($sim$1000~km~s$^{-1}$) NIII$lambda$4640, HeII$lambda4686$, H$alpha$, and H$beta$, emission in the late-time optical spectra of AT2018zr, which may be a result of UV continuum hardening at late time as observed by Swift. Including AT2018zr, we find a high association rate (3 out of 4) of BALs in the UV spectra of TDEs. This suggests that outflows may be ubiquitous among TDEs and may be less sensitive to viewing angle effects compared to QSO outflows.
Following a tidal disruption event (TDE), the accretion rate can evolve from quiescent to near-Eddington levels and back over months - years timescales. This provides a unique opportunity to study the formation and evolution of the accretion flow around supermassive black holes (SMBHs). We present two years of multi-wavelength monitoring observations of the TDE AT2018fyk at X-ray, UV, optical and radio wavelengths. We identify three distinct accretion states and two state transitions between them. These appear remarkably similar to the behaviour of stellar-mass black holes in outburst. The X-ray spectral properties show a transition from a soft (thermal-dominated) to a hard (power-law dominated) spectral state around L$_{rm bol} sim $few $ times 10^{-2}$ L$_{rm Edd}$, and the strengthening of the corona over time $sim$100--200 days after the UV/optical peak. Contemporaneously, the spectral energy distribution (in particular, the UV-to-X-ray spectral slope $alpha_{ox}$) shows a pronounced softening as the outburst progresses. The X-ray timing properties also show a marked change, initially dominated by variability at long ($>$day) timescales while a high frequency ($sim$10$^{-3}$ Hz) component emerges after the transition into the hard state. At late times ($sim$500 days after peak), a second accretion state transition occurs, from the hard into the quiescent state, as identified by the sudden collapse of the bolometric (X-ray+UV) emission to levels below 10$^{-3.4}$ L$_{rm Edd}$. Our findings illustrate that TDEs can be used to study the scale (in)variance of accretion processes in individual SMBHs. Consequently, they provide a new avenue to study accretion states over seven orders of magnitude in black hole mass, removing limitations inherent to commonly used ensemble studies.
We present multi-wavelength observations of the tidal disruption event (TDE) iPTF15af, discovered by the intermediate Palomar Transient Factory (iPTF) survey at redshift $z=0.07897$. The optical and ultraviolet (UV) light curves of the transient show a slow decay over five months, in agreement with previous optically discovered TDEs. It also has a comparable black-body peak luminosity of $L_{rm{peak}} approx 1.5 times 10^{44}$ erg/s. The inferred temperature from the optical and UV data shows a value of (3$-$5) $times 10^4$ K. The transient is not detected in X-rays up to $L_X < 3 times 10^{42}$erg/s within the first five months after discovery. The optical spectra exhibit two distinct broad emission lines in the He II region, and at later times also H$alpha$ emission. Additionally, emission from [N III] and [O III] is detected, likely produced by the Bowen fluorescence effect. UV spectra reveal broad emission and absorption lines associated with high-ionization states of N V, C IV, Si IV, and possibly P V. These features, analogous to those of broad absorption line quasars (BAL QSOs), require an absorber with column densities $N_{rm{H}} > 10^{23}$ cm$^{-2}$. This optically thick gas would also explain the non-detection in soft X-rays. The profile of the absorption lines with the highest column density material at the largest velocity is opposite that of BAL QSOs. We suggest that radiation pressure generated by the TDE flare at early times could have provided the initial acceleration mechanism for this gas. Spectral UV line monitoring of future TDEs could test this proposal.