Do you want to publish a course? Click here

New insights into the 1D carbon chain through the RPA

270   0   0.0 ( 0 )
 Added by Benjamin Ramberger
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigated the electronic and structural properties of the infinite linear carbon chain (carbyne) using density functional theory (DFT) and the random phase approximation (RPA) to the correlation energy. The studies are performed in vacuo and for carbyne inside a carbon nano tube (CNT). In the vacuum, semi-local DFT and RPA predict bond length alternations of about 0.04 {AA} and 0.13 {AA}, respectively. The frequency of the highest optical mode at the $Gamma$ point is 1219 cm$^{-1}$ and about 2000 cm$^{-1}$ for DFT and the RPA. Agreement of the RPA to previous high level quantum chemistry and diffusion Monte-Carlo results is excellent. For the RPA we calculate the phonon-dispersion in the full Brillouine zone and find marked quantitative differences to DFT calculations not only at the $Gamma$ point but also throughout the entire Brillouine zone. To model carbyne inside a carbon nanotube, we considered a (10,0) CNT. Here the DFT calculations are even qualitatively sensitive to the k-points sampling. At the limes of a very dense k-points sampling, semi-local DFT predicts no bond length alternation (BLA), whereas in the RPA a sizeable BLA of 0.09 {AA} prevails. The reduced BLA leads to a significant red shift of the vibrational frequencies of about 350 cm$^{-1}$, so that they are in good agreement with experimental estimates. Overall, the good agreement between the RPA and previously reported results from correlated wavefunction methods and experimental Raman data suggests that the RPA provides reliable results at moderate computational costs. It hence presents a useful addition to the repertoire of correlated wavefunction methods and its accuracy clearly prevails for low dimensional systems, where semi-local density functionals struggle to yield even qualitatively correct results.



rate research

Read More

The sorption of radionuclides by graphene oxides synthesized by different methods was studied through a combination of batch experiments with characterization by microscopic and spectroscopic techniques such as X-ray photoelectron spectroscopy (XPS), attenuated total reflection fourier-transform infrared spectroscopy (ATR-FTIR), high-energy resolution fluorescence detected X-Ray absorption spectroscopy (HERFD-XANES), extended X-ray absorption fine structure (EXAFS) and high resolution transmission electron microscopy (HRTEM).
The emph{semiclassical Wigner treatment} of Brown and Heller [J. Chem. Phys. 75, 186 (1981)] is applied to triatomic direct photodissociations with the aim of accurately predicting final state distributions at relatively low computational cost, and having available a powerful interpretative tool. For the first time, the treatment is full-dimensional. The proposed formulation closely parallels the quantum description as far as possible. An approximate version is proposed, which is still accurate while numerically much more efficient. In addition to be weighted by usual vibrational Wigner distributions, final phase space states appear to be weighted by new emph{rotational Wigner distributions}. These densities have remarkable structures clearly showing that classical trajectories most contributing to rotational state $j$ are those reaching the products with a rotational angular momentum close to $[j(j+1)]^{1/2}$ (in $hbar$ unit). The previous methods involve running trajectories from the reagent molecule onto the products. The alternative emph{backward approach} [L. Bonnet, J. Chem. Phys. 133, 174108 (2010)], in which trajectories are run in the reverse direction, is shown to strongly improve the numerical efficiency of the most rigorous method in addition to be emph{state-selective}, and thus, ideally suited to the description of state-correlated distributions measured in velocity imaging experiments. The results obtained by means of the previous methods are compared with rigorous quantum results in the case of Guos triatomic-like model of methyl iodide photodissociation [J. Chem. Phys. 96, 6629 (1992)] and an astonishing agreement is found. In comparison, the standard method of Goursaud emph{et al.} [J. Chem. Phys. 65, 5453 (1976)] is only semi-quantitative.
Machine learning models are poised to make a transformative impact on chemical sciences by dramatically accelerating computational algorithms and amplifying insights available from computational chemistry methods. However, achieving this requires a confluence and coaction of expertise in computer science and physical sciences. This review is written for new and experienced researchers working at the intersection of both fields. We first provide concise tutorials of computational chemistry and machine learning methods, showing how insights involving both can be achieved. We then follow with a critical review of noteworthy applications that demonstrate how computational chemistry and machine learning can be used together to provide insightful (and useful) predictions in molecular and materials modeling, retrosyntheses, catalysis, and drug design.
102 - L. Bonnet 2013
The semiclassical Wigner treatment of bimolecular collisions, proposed by Lee and Scully on a partly intuitive basis [J. Chem. Phys. 73, 2238 (1980)], is derived here from first principles. The derivation combines E. J. Hellers ideas [J. Chem. Phys. 62, 1544 (1975); 65, 1289 (1976); 75, 186 (1981)], the backward picture of molecular collisions [L. Bonnet, J. Chem. Phys. 133, 174108 (2010)] and the microreversibility principle.
A computational model study for complete frequency redistribution linear incoherent two-level atomic radiation trapping in optically dense media using the multiple scattering representation is presented. This model study discuss at length the influence of the spectral distributions, overall opacity and emission quantum yield to trapping distorted ensemble quantities stressing physical insight and with a non-specialist audience in mind. Macroscopic reemission yield, lifetime, steady state spectra and spatial distributions are calculated as a function of intrinsic emission yield, opacity and external excitation mode for Doppler, Lorentz and Voigt lineshapes. The work could constitute the basis for a final undergraduate or beginning graduate project in computational physics instruction and implements the analytical developments of the previous instalment of this contribution.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا