Do you want to publish a course? Click here

Flavoured Warped Axion

85   0   0.0 ( 0 )
 Added by Minh Nguyen
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We consider a 5D extension of the DFSZ axion model that addresses both the axion quality and fermion mass hierarchy problems, and predicts flavour-dependent, off-diagonal axion-fermion couplings. The axion is part of a 5D complex scalar field charged under a U(1)$_{PQ}$ symmetry that is spontaneously broken in the bulk, and is insensitive to explicit PQ breaking on the UV boundary. Bulk Standard Model fermions interact with two Higgs doublets that can be localized on the UV boundary or propagate in the bulk to explain the fermion masses and mixings. When the Higgs doublets are localized on the UV boundary, they induce flavour diagonal couplings between the fermions and the axion. However, when the Higgs doublets propagate in the bulk, the overlap of the axion and fermion profiles generates flavour off-diagonal couplings. The effective scale of these off-diagonal couplings in both the quark and lepton sectors can be as small as $10^{11}$ GeV, and therefore will be probed in future precision flavour experiments.

rate research

Read More

We investigate the phenomenology of a simplified model of flavoured Dark Matter (DM), with a dark fermionic flavour triplet coupling to the left-handed $SU(2)_L$ quark doublets via a scalar mediator. The DM-quark coupling matrix is assumed to constitute the only new source of flavour and CP violation, following the hypothesis of Dark Minimal Flavour Violation. We analyse the constraints from LHC searches, from meson mixing data in the $K$, $D$, and $B_{d,s}$ meson systems, from thermal DM freeze-out, and from direct detection experiments. Our combined analysis shows that while the experimental constraints are similar to the DMFV models with DM coupling to right-handed quarks, the multitude of couplings between DM and the SM quark sector resulting from the $SU(2)_L$ structure implies a richer phenomenology and significantly alters the resulting impact on the viable parameter space.
We discuss a mechanism of neutrinoless double beta decay, where neutrinos of different flavours come into play. This is realized by effective flavour-violating scalar interactions. As one consequence, we find that within the normal mass ordering the neutrino effective mass may no longer vanish due to contributions from other flavours. We evaluate the necessary nuclear matrix elements, consider the interference between the standard diagram and the new scalar one, and analyze a UV-complete model that realizes the scalar interaction. Tests of the complete model are possible at colliders and future neutrino experiments. Our scenario represents an alternative mechanism for neutrinoless double beta decay, where nevertheless lepton number violation resides only in Majorana mass terms of light neutrinos.
We point out that supersymmetric warped geometry can provide a solution to the SUSY flavor problem, while generating hierarchical Yukawa couplings. In supersymmetric theories in a slice of AdS_5 with the Kaluza-Klein scale M_KK much higher than the weak scale, if all visible fields originate from 5D bulk fields and supersymmetry breaking is mediated by the bulk radion superfield and/or some brane chiral superfields, potentially dangerous soft scalar masses and trilinear $A$ parameters at M_KK can be naturally suppressed compared to the gaugino masses by small warp factor. We present simple models yielding phenomenologically interesting patterns of soft parameters in this framework.
We calculate the production rate of the Higgs boson at the LHC in the context of general 5 dimensional (5D) warped scenarios with spacetime background modified from the usual $AdS_5$, and where all the SM fields, including the Higgs, propagate in the bulk. This modification can alleviate considerably the bounds coming from precision electroweak tests and flavor physics. We evaluate the Higgs production rate and show that it is generically consistent with the current experimental results from the LHC for Kaluza-Klein (KK) masses as low as 2 TeV, unlike in pure $AdS_5$ scenarios, where for the same masses, the Higgs production typically receives corrections too large to be consistent with LHC data. Thus the new pressure on warped models arising from LHC Higgs data is also alleviated in $AdS_5$-modified warped scenarios.
138 - Marcela Carena 2012
Measurements of the Higgs-boson production cross section at the LHC are an important tool for studying electroweak symmetry breaking at the quantum level, since the main production mechanism gg-->h is loop-suppressed in the Standard Model (SM). Higgs production in extra-dimensional extensions of the SM is sensitive to the Kaluza-Klein (KK) excitations of the quarks, which can be exchanged as virtual particles in the loop. In the context of the minimal Randall-Sundrum (RS) model with bulk fields and a brane-localized Higgs sector, we derive closed analytical expressions for the gluon-gluon fusion process, finding that the effect of the infinite tower of virtual KK states can be described in terms of a simple function of the fundamental (5D) Yukawa matrices. Given a specific RS model, this will allow one to easily constrain the parameter space, once a Higgs signal has been established. We explain that discrepancies between existing calculations of Higgs production in RS models are related to the non-commutativity of two limits: taking the number of KK states to infinity and removing the regulator on the Higgs-boson profile, which is required in an intermediate step to make the relevant overlap integrals well defined. Even though the one-loop gg-->h amplitude is finite in RS scenarios with a brane-localized Higgs sector, it is important to introduce a consistent ultraviolet regulator in order to obtain the correct result.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا