Do you want to publish a course? Click here

Enhanced Framework of Quantum Approximate Optimization Algorithm and Its Parameter Setting Strategy

89   0   0.0 ( 0 )
 Added by Mingyou Wu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

An enhanced framework of quantum approximate optimization algorithm (QAOA) is introduced and the parameter setting strategies are analyzed. The enhanced QAOA is as effective as the QAOA but exhibits greater computing power and flexibility, and with proper parameters, it can arrive at the optimal solution faster. Moreover, based on the analysis of this framework, strategies are provided to select the parameter at a cost of $O(1)$. Simulations are conducted on randomly generated 3-satisfiability (3-SAT) of scale of 20 qubits and the optimal solution can be found with a high probability in iterations much less than $O(sqrt{N})$



rate research

Read More

The quantum approximate optimization algorithm (QAOA) has numerous promising applications in solving the combinatorial optimization problems on near-term Noisy Intermediate Scalable Quantum (NISQ) devices. QAOA has a quantum-classical hybrid structure. Its quantum part consists of a parameterized alternating operator ansatz, and its classical part comprises an optimization algorithm, which optimizes the parameters to maximize the expectation value of the problem Hamiltonian. This expectation value depends highly on the parameters, this implies that a set of good parameters leads to an accurate solution. However, at large circuit depth of QAOA, it is difficult to achieve global optimization due to the multiple occurrences of local minima or maxima. In this paper, we propose a parameters fixing strategy which gives high approximation ratio on average, even at large circuit depths, by initializing QAOA with the optimal parameters obtained from the previous depths. We test our strategy on the Max-cut problem of certain classes of graphs such as the 3-regular graphs and the Erd{o}s-R{e}nyi graphs.
The performance of the quantum approximate optimization algorithm is evaluated by using three different measures: the probability of finding the ground state, the energy expectation value, and a ratio closely related to the approximation ratio. The set of problem instances studied consists of weighted MaxCut problems and 2-satisfiability problems. The Ising model representations of the latter possess unique ground states and highly-degenerate first excited states. The quantum approximate optimization algorithm is executed on quantum computer simulators and on the IBM Q Experience. Additionally, data obtained from the D-Wave 2000Q quantum annealer is used for comparison, and it is found that the D-Wave machine outperforms the quantum approximate optimization algorithm executed on a simulator. The overall performance of the quantum approximate optimization algorithm is found to strongly depend on the problem instance.
120 - Yulong Dong , Xiang Meng , Lin Lin 2019
Quantum variational algorithms have garnered significant interest recently, due to their feasibility of being implemented and tested on noisy intermediate scale quantum (NISQ) devices. We examine the robustness of the quantum approximate optimization algorithm (QAOA), which can be used to solve certain quantum control problems, state preparation problems, and combinatorial optimization problems. We demonstrate that the error of QAOA simulation can be significantly reduced by robust control optimization techniques, specifically, by sequential convex programming (SCP), to ensure error suppression in situations where the source of the error is known but not necessarily its magnitude. We show that robust optimization improves both the objective landscape of QAOA as well as overall circuit fidelity in the presence of coherent errors and errors in initial state preparation.
The quantum approximate optimization algorithm (QAOA) is a hybrid quantum-classical variational algorithm which offers the potential to handle combinatorial optimization problems. Introducing constraints in such combinatorial optimization problems poses a major challenge in the extensions of QAOA to support relevant larger scale problems. In this paper, we introduce a quantum machine learning approach to learn the mixer Hamiltonian that is required to hard constrain the search subspace. We show that this method can be used for encoding any general form of constraints. By using a form of an adaptable ansatz, one can directly plug the learnt unitary into the QAOA framework. This procedure gives the flexibility to control the depth of the circuit at the cost of accuracy of enforcing the constraint, thus having immediate application in the Noisy Intermediate Scale Quantum (NISQ) era. We also develop an intuitive metric that uses Wasserstein distance to assess the performance of general approximate optimization algorithms with/without constrains. Finally using this metric, we evaluate the performance of the proposed algorithm.
The quantum approximate optimization algorithm (QAOA) transforms a simple many-qubit wavefunction into one which encodes the solution to a difficult classical optimization problem. It does this by optimizing the schedule according to which two unitary operators are alternately applied to the qubits. In this paper, this procedure is modified by updating the operators themselves to include local fields, using information from the measured wavefunction at the end of one iteration step to improve the operators at later steps. It is shown by numerical simulation on MAXCUT problems that this decreases the runtime of QAOA very substantially. This improvement appears to increase with the problem size. Our method requires essentially the same number of quantum gates per optimization step as the standard QAOA. Application of this modified algorithm should bring closer the time to quantum advantage for optimization problems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا