Do you want to publish a course? Click here

Understanding the Impacts of Stellar Companions on Planet Formation and Evolution: A Survey of Stellar and Planetary Companions within 25 pc

108   0   0.0 ( 0 )
 Added by Lea Hirsch
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore the impact of outer stellar companions on the occurrence rate of giant planets detected with radial velocities. We searched for stellar and planetary companions to a volume-limited sample of solar-type stars within 25 pc. Using adaptive optics imaging from the Lick 3m and Palomar 200 Telescopes, we characterized the multiplicity of our sample stars, down to the bottom of the main sequence. With these data, we confirm field star multiplicity statistics from previous surveys. We combined three decades of radial velocity data from the California Planet Search with new RV data from Keck/HIRES and APF/Levy to search for planets in the same systems. Using an updated catalog of both stellar and planetary companions and injection/recovery tests to determine our sensitivity, we measured the occurrence rate of planets among the single and multiple star systems. We found that planets with masses of 0.1-10 $M_{Jup}$ and semi-major axes of 0.1-10 AU have an occurrence rate of $0.18^{+0.04}_{-0.03}$ planets per single star, and $0.12pm0.04$ planets per binary primary. Only one planet-hosting binary system in our sample had a binary separation $<100$ AU, and none had a separation $<50$ AU. We found planet occurrence rates of $0.20^{+0.07}_{-0.06}$ planets per star for binaries with separation $a_B > 100$ AU, and $0.04^{+0.04}_{-0.02}$ planets per star for binaries with separation $a_B<100$ AU. The similarity in the planet occurrence rate around single stars and wide primaries implies that wide binary systems should host more planets than single star systems, since they have more potential host stars. We estimated a system-wide planet occurrence rate of 0.3 planets per wide binary system for binaries with separations $a_B > 100$ AU. Finally, we found evidence that giant planets in binary systems have a different semi-major axis distribution than their counterparts in single star systems.



rate research

Read More

We present the results of the second year of exoplanet candidate host speckle observations from the SOAR TESS survey. We find 89 of the 589 newly observed TESS planet candidate hosts have companions within 3arcsec, resulting in light curve dilution, that if not accounted for leads to underestimated planetary radii. We combined these observations with those from paper I to search for evidence of the impact binary stars have on planetary systems. Removing the quarter of the targets observed identified as false-positive planet detections, we find that transiting planet are suppressed by nearly a factor-of-seven in close solar-type binaries, nearly twice the suppression previously reported. The result on planet occurrence rates that are based on magnitude limited surveys is an overestimation by a factor of two if binary suppression is not taken into account. We also find tentative evidence for similar close binary suppression of planets in M-dwarf systems. Lastly, we find that the high rates of widely separated companions to hot Jupiter hosts previously reported was likely a result of false-positive contamination in our sample.
Revealing the mechanisms shaping the architecture of planetary systems is crucial for our understanding of their formation and evolution. In this context, it has been recently proposed that stellar clustering might be the key in shaping the orbital architecture of exoplanets. The main goal of this work is to explore the factors that shape the orbits of planets. We used a homogeneous sample of relatively young FGK dwarf stars with RV detected planets and tested the hypothesis that their association to phase space (position-velocity) over-densities (cluster stars) and under-densities (field stars) impacts the orbital periods of planets. When controlling for the host star properties, on a sample of 52 planets orbiting around cluster stars and 15 planets orbiting around field star, we found no significant difference in the period distribution of planets orbiting these two populations of stars. By considering an extended sample of 73 planets orbiting around cluster stars and 25 planets orbiting field stars, a significant different in the planetary period distributions emerged. However, the hosts associated to stellar under-densities appeared to be significantly older than their cluster counterparts. This did not allow us to conclude whether the planetary architecture is related to age, environment, or both. We further studied a sample of planets orbiting cluster stars to study the mechanism responsible for the shaping of orbits of planets in similar environments. We could not identify a parameter that can unambiguously be responsible for the orbital architecture of massive planets, perhaps, indicating the complexity of the issue. Conclusions. Increased number of planets in clusters and in over-density environments will help to build large and unbiased samples which will then allow to better understand the dominant processes shaping the orbits of planets.
Stellar astrophysicists are increasingly taking into account the effects of orbiting companions on stellar evolution. New discoveries, many thanks to systematic time-domain surveys, have underlined the role of binary star interactions in a range of astrophysical events, including some that were previously interpreted as due uniquely to single stellar evolution. Here, we review classical binary phenomena such as type Ia supernovae, and discuss new phenomena such as intermediate luminosity transients, gravitational wave-producing double black holes, or the interaction between stars and their planets. Finally, we examine the reassessment of well-known phenomena in light of interpretations that include both single and binary stars, for example supernovae of type Ib and Ic or luminous blue variables. At the same time we contextualise the new discoveries within the framework and nomenclature of the corpus of knowledge on binary stellar evolution. The last decade has heralded an era of revival in stellar astrophysics as the complexity of stellar observations is increasingly interpreted with an interplay of single and binary scenarios. The next decade, with the advent of massive projects such as the Large Synoptic Survey Telescope, the Square Kilometre Array, the James Webb Space Telescope and increasingly sophisticated computational methods, will see the birth of an expanded framework of stellar evolution that will have repercussions in many other areas of astrophysics such as galactic evolution and nucleosynthesis.
TESS is finding transiting planet candidates around bright, nearby stars across the entire sky. The large field-of-view, however, results in low spatial resolution, therefore multiple stars contribute to almost every TESS light curve. High-angular resolution imaging can detect the previously unknown companions to planetary candidate hosts that dilute the transit depths, lead to host star ambiguity, and in some cases are the source of false-positive transit signals. We use speckle imaging on SOAR to search for companions to 542 TESS planet candidate hosts in the Southern sky. We provide correction factors for the 117 systems with resolved companions due to photometric contamination. The contamination in TESS due to close binaries is similar to that found in surveys of Kepler planet candidates. For the solar-type population, we find a deep deficit of close binary systems with projected stellar separations less than 100 AU among planet candidate hosts (44 observed binaries compared to 124 expected based on field binary statistics). The close binary suppression among TESS planet candidate hosts is similar to that seen for the more distant Kepler population. We also find a large surplus of the TESS planet candidates in wide binary systems, detected in both SOAR and Gaia DR2 (119 observed binaries compared to 77 expected). These wide binaries host almost exclusively giant planets, however, suggesting orbital migration, caused by perturbations from the stellar companion, may lead to planet-planet scattering and suppress the population of small planets in wide binaries. Both trends are also apparent in the M-dwarf planet candidate hosts.
The Kepler light curves used to detect thousands of planetary candidates are susceptible to dilution due to blending with previously unknown nearby stars. With the automated laser adaptive optics instrument, Robo-AO, we have observed 620 nearby stars around 3857 planetary candidates host stars. Many of the nearby stars, however, are not bound to the KOI. In this paper, we quantify the association probability between each KOI and detected nearby stars through several methods. Galactic stellar models and the observed stellar density are used to estimate the number and properties of unbound stars. We estimate the spectral type and distance to 145 KOIs with nearby stars using multi-band observations from Robo-AO and Keck-AO. We find most nearby stars within 1 of a Kepler planetary candidate are likely bound, in agreement with past studies. We use likely bound stars as well as the precise stellar parameters from the California Kepler Survey to search for correlations between stellar binarity and planetary properties. No significant difference between the binarity fraction of single and multiple planet systems is found, and planet hosting stars follow similar binarity trends as field stars, many of which likely host their own non-aligned planets. We find that hot Jupiters are ~4x more likely than other planets to reside in a binary star system. We correct the radius estimates of the planet candidates in characterized systems and find that for likely bound systems, the estimated planetary candidate radii will increase on average by a factor of 1.77, if either star is equally likely to host the planet. We find that the planetary radius gap is robust to the impact of dilution, and find an intriguing 95%-confidence discrepancy between the radius distribution of small planets in single and binary systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا