Do you want to publish a course? Click here

A Differential Model of the Complex Cell

74   0   0.0 ( 0 )
 Added by Radu Horaud P
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The receptive fields of simple cells in the visual cortex can be understood as linear filters. These filters can be modelled by Gabor functions, or by Gaussian derivatives. Gabor functions can also be combined in an `energy model of the complex cell response. This paper proposes an alternative model of the complex cell, based on Gaussian derivatives. It is most important to account for the insensitivity of the complex response to small shifts of the image. The new model uses a linear combination of the first few derivative filters, at a single position, to approximate the first derivative filter, at a series of adjacent positions. The maximum response, over all positions, gives a signal that is insensitive to small shifts of the image. This model, unlike previous approaches, is based on the scale space theory of visual processing. In particular, the complex cell is built from filters that respond to the twod differential structure of the image. The computational aspects of the new model are studied in one and two dimensions, using the steerability of the Gaussian derivatives. The response of the model to basic images, such as edges and gratings, is derived formally. The response to natural images is also evaluated, using statistical measures of shift insensitivity. The relevance of the new model to the cortical image representation is discussed.



rate research

Read More

112 - Jack A. Cook 2020
This thesis is designed to be a self-contained exposition of the neurobiological and mathematical aspects of sensory perception, memory, and learning with a bias towards olfaction. The final chapters introduce a new approach to modeling focusing more on the geometry of the system as opposed to element wise dynamics. Additionally, we construct an organism independent model for olfactory processing: something which is currently missing from the literature.
107 - Arnab Barua 2016
In this paper I have given a mathematical model of Cell reprogramming from a different contexts. Here I considered there is a delay in differential regulator rate equations due to intermediate regulators regulations. At first I gave some basic mathematical models by Ferell Jr.[2] of reprogramming and after that I gave mathematical model of cell reprogramming by Mithun Mitra[4]. In the last section I contributed a mathematical model of cell reprogramming from intermediate steps regulations and tried to find the critical point of pluripotent cell.
We describe a large-scale functional brain model that includes detailed, conductance-based, compartmental models of individual neurons. We call the model BioSpaun, to indicate the increased biological plausibility of these neurons, and because it is a direct extension of the Spaun model cite{Eliasmith2012b}. We demonstrate that including these detailed compartmental models does not adversely affect performance across a variety of tasks, including digit recognition, serial working memory, and counting. We then explore the effects of applying TTX, a sodium channel blocking drug, to the model. We characterize the behavioral changes that result from this molecular level intervention. We believe this is the first demonstration of a large-scale brain model that clearly links low-level molecular interventions and high-level behavior.
While theories postulating a dual cognitive system take hold, quantitative confirmations are still needed to understand and identify interactions between the two systems or conflict events. Eye movements are among the most direct markers of the individual attentive load and may serve as an important proxy of information. In this work we propose a computational method, within a modified visual version of the well-known Stroop test, for the identification of different tasks and potential conflicts events between the two systems through the collection and processing of data related to eye movements. A statistical analysis shows that the selected variables can characterize the variation of attentive load within different scenarios. Moreover, we show that Machine Learning techniques allow to distinguish between different tasks with a good classification accuracy and to investigate more in depth the gaze dynamics.
Retinal circuitry transforms spatiotemporal patterns of light into spiking activity of ganglion cells, which provide the sole visual input to the brain. Recent advances have led to a detailed characterization of retinal activity and stimulus encoding by large neural populations. The inverse problem of decoding, where the stimulus is reconstructed from spikes, has received less attention, in particular for complex input movies that should be reconstructed pixel-by-pixel. We recorded around a hundred neurons from a dense patch in a rat retina and decoded movies of multiple small discs executing mutually-avoiding random motions. We constructed nonlinear (kernelized) decoders that improved significantly over linear decoding results, mostly due to their ability to reliably separate between neural responses driven by locally fluctuating light signals, and responses at locally constant light driven by spontaneous or network activity. This improvement crucially depended on the precise, non-Poisson temporal structure of individual spike trains, which originated in the spike-history dependence of neural responses. Our results suggest a general paradigm in which downstream neural circuitry could discriminate between spontaneous and stimulus-driven activity on the basis of higher-order statistical structure intrinsic to the incoming spike trains.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا