Do you want to publish a course? Click here

Real-time Multi-Task Diffractive Deep Neural Networks via Hardware-Software Co-design

232   0   0.0 ( 0 )
 Added by Cunxi Yu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Deep neural networks (DNNs) have substantial computational requirements, which greatly limit their performance in resource-constrained environments. Recently, there are increasing efforts on optical neural networks and optical computing based DNNs hardware, which bring significant advantages for deep learning systems in terms of their power efficiency, parallelism and computational speed. Among them, free-space diffractive deep neural networks (D$^2$NNs) based on the light diffraction, feature millions of neurons in each layer interconnected with neurons in neighboring layers. However, due to the challenge of implementing reconfigurability, deploying different DNNs algorithms requires re-building and duplicating the physical diffractive systems, which significantly degrades the hardware efficiency in practical application scenarios. Thus, this work proposes a novel hardware-software co-design method that enables robust and noise-resilient Multi-task Learning in D$^2$NNs. Our experimental results demonstrate significant improvements in versatility and hardware efficiency, and also demonstrate the robustness of proposed multi-task D$^2$NN architecture under wide noise ranges of all system components. In addition, we propose a domain-specific regularization algorithm for training the proposed multi-task architecture, which can be used to flexibly adjust the desired performance for each task.



rate research

Read More

The use of deep learning has grown at an exponential rate, giving rise to numerous specialized hardware and software systems for deep learning. Because the design space of deep learning software stacks and hardware accelerators is diverse and vast, prior work considers software optimizations separately from hardware architectures, effectively reducing the search space. Unfortunately, this bifurcated approach means that many profitable design points are never explored. This paper instead casts the problem as hardware/software co-design, with the goal of automatically identifying desirable points in the joint design space. The key to our solution is a new constrained Bayesian optimization framework that avoids invalid solutions by exploiting the highly constrained features of this design space, which are semi-continuous/semi-discrete. We evaluate our optimization framework by applying it to a variety of neural models, improving the energy-delay product by 18% (ResNet) and 40% (DQN) over hand-tuned state-of-the-art systems, as well as demonstrating strong results on other neural network architectures, such as MLPs and Transformers.
In this paper, we present a novel multi-objective hardware-aware neural architecture search (NAS) framework, namely HSCoNAS, to automate the design of deep neural networks (DNNs) with high accuracy but low latency upon target hardware. To accomplish this goal, we first propose an effective hardware performance modeling method to approximate the runtime latency of DNNs on target hardware, which will be integrated into HSCoNAS to avoid the tedious on-device measurements. Besides, we propose two novel techniques, i.e., dynamic channel scaling to maximize the accuracy under the specified latency and progressive space shrinking to refine the search space towards target hardware as well as alleviate the search overheads. These two techniques jointly work to allow HSCoNAS to perform fine-grained and efficient explorations. Finally, an evolutionary algorithm (EA) is incorporated to conduct the architecture search. Extensive experiments on ImageNet are conducted upon diverse target hardware, i.e., GPU, CPU, and edge device to demonstrate the superiority of HSCoNAS over recent state-of-the-art approaches.
151 - Cong Hao , Deming Chen 2021
Optimizing the quality of result (QoR) and the quality of service (QoS) of AI-empowered autonomous systems simultaneously is very challenging. First, there are multiple input sources, e.g., multi-modal data from different sensors, requiring diverse data preprocessing, sensor fusion, and feature aggregation. Second, there are multiple tasks that require various AI models to run simultaneously, e.g., perception, localization, and control. Third, the computing and control system is heterogeneous, composed of hardware components with varied features, such as embedded CPUs, GPUs, FPGAs, and dedicated accelerators. Therefore, autonomous systems essentially require multi-modal multi-task (MMMT) learning which must be aware of hardware performance and implementation strategies. While MMMT learning has been attracting intensive research interests, its applications in autonomous systems are still underexplored. In this paper, we first discuss the opportunities of applying MMMT techniques in autonomous systems and then discuss the unique challenges that must be solved. In addition, we discuss the necessity and opportunities of MMMT model and hardware co-design, which is critical for autonomous systems especially with power/resource-limited or heterogeneous platforms. We formulate the MMMT model and heterogeneous hardware implementation co-design as a differentiable optimization problem, with the objective of improving the solution quality and reducing the overall power consumption and critical path latency. We advocate for further explorations of MMMT in autonomous systems and software/hardware co-design solutions.
We report a broadband diffractive optical neural network design that simultaneously processes a continuum of wavelengths generated by a temporally-incoherent broadband source to all-optically perform a specific task learned using deep learning. We experimentally validated the success of this broadband diffractive neural network architecture by designing, fabricating and testing seven different multi-layer, diffractive optical systems that transform the optical wavefront generated by a broadband THz pulse to realize (1) a series of tunable, single passband as well as dual passband spectral filters, and (2) spatially-controlled wavelength de-multiplexing. Merging the native or engineered dispersion of various material systems with a deep learning-based design strategy, broadband diffractive neural networks help us engineer light-matter interaction in 3D, diverging from intuitive and analytical design methods to create task-specific optical components that can all-optically perform deterministic tasks or statistical inference for optical machine learning.
We propose a novel hardware and software co-exploration framework for efficient neural architecture search (NAS). Different from existing hardware-aware NAS which assumes a fixed hardware design and explores the neural architecture search space only, our framework simultaneously explores both the architecture search space and the hardware design space to identify the best neural architecture and hardware pairs that maximize both test accuracy and hardware efficiency. Such a practice greatly opens up the design freedom and pushes forward the Pareto frontier between hardware efficiency and test accuracy for better design tradeoffs. The framework iteratively performs a two-level (fast and slow) exploration. Without lengthy training, the fast exploration can effectively fine-tune hyperparameters and prune inferior architectures in terms of hardware specifications, which significantly accelerates the NAS process. Then, the slow exploration trains candidates on a validation set and updates a controller using the reinforcement learning to maximize the expected accuracy together with the hardware efficiency. Experiments on ImageNet show that our co-exploration NAS can find the neural architectures and associated hardware design with the same accuracy, 35.24% higher throughput, 54.05% higher energy efficiency and 136x reduced search time, compared with the state-of-the-art hardware-aware NAS.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا