We calculate the production cross-section and the transverse single-spin asymmetry for pion in $p^{uparrow}+pto pi^0 + X$. Our computation is based on existence of the instanton induced effective quark-gluon and quark-gluon-pion interactions with a strong spin dependency. In this framework we calculate the cross section without using fragmentation functions. We compare predictions of the model with data from RHIC. Our numerical results, based on the instanton liquid model for QCD vacuum, are in agreement with unpolarized cross section data. The asymmetry grows with the transverse momentum of pion $k_t$ in accordance with experimental observations. It reach value $sim 10%$ but at higher $k_t$ than experiment shows.