Impact of novel electron-phonon coupling mechanisms on valley physics in two-dimensional materials


Abstract in English

We systematically study the impact of various electron-acoustic-phonon coupling mechanisms on valley physics in two-dimensional materials. In the static strain limit, we find that Dirac cone tilt and deformation potential have analogous valley Hall response since they fall into the same universality class of pseudospin structure. However, such argument fails for the coupling mechanism with position-dependent Fermi velocity. For the isotropic case, a significant valley Hall effect occurs near charge neutrality similar to the bond-length change, whereas for the anisotropic case, the geometric valley transport is suppressed, akin to the deformation potential. Gap opening mechanism by nonuniform strain is found to totally inhibit the valley Hall transport, even if the dynamics of strains are introduced. By varying gate voltage, a tunable phonon-assisted valley Hall response can be realized, which paves a way toward rich phenomena and new functionalities of valley acoustoelectronics.

Download